Discrete Element Simulation of the Direct Shear Test of Sandy Soil

Author(s):  
Yao Jiang ◽  
Yanjie Li
2020 ◽  
Vol 57 (3) ◽  
pp. 433-447 ◽  
Author(s):  
Shi-Jin Feng ◽  
Jie-Ni Chen ◽  
Hong-Xin Chen ◽  
Xin Liu ◽  
T. Zhao ◽  
...  

The interaction between soil and geotextile is essential for the performance of reinforced soil. This study reveals the microscopic mechanism of interface shear between sand and geotextile based on the discrete element method (DEM). The surface characteristics of geotextile are simulated by overlapped particles. The micromechanical parameters of sand, geotextile, and interface are calibrated effectively using laboratory test results. Three types of shear tests on the sand–geotextile interface are simulated; namely, interface direct shear test (IDST), double-sided interface shear test (D_IST), and interface direct shear test with periodic boundary (PBST). For IDST, the results show that the thickness of shear band is 2.4∼3.0 times the average particle diameter (D50); the contact force, percentage of sliding contact, and contact normal anisotropy inside the shear band are larger than those outside the shear band, whereas the coordination number is smaller inside the shear band. The mechanical response of D_IST is similar to that of IDST. However, D_IST has a shear band thickness of 3.0D50, and greater coordination number, percentage of sliding contact, and contact normal anisotropy. The results of PBST indicate that the peak stress and the shear band no longer appear without boundary constraint and the contact distribution is uniform.


2020 ◽  
Vol 12 (7) ◽  
pp. 2836
Author(s):  
Yunlong Guo ◽  
Yameng Ji ◽  
Qiang Zhou ◽  
Valeri Markine ◽  
Guoqing Jing

The rubber-protected ballast (RPB) is made from natural ballast particles and crumb rubber particles. The crumb rubber is shredded waste tires. RPB was chosen to replace the ballast as it has higher resistance to breakage and abrasion. However, the static and dynamic performance of the RPB has not been confirmed yet. Towards this end, experimental tests and numerical simulations were utilized to study the feasibility of RPB application. Direct shear tests (DSTs) were performed and a DST model and three-sleeper track model with the discrete element method (DEM) were built. The shear strength, settlement, displacement, and acceleration of the RPB were studied. The results show that the RPB has the advantage of increasing the force (stress) distribution and that the smaller crumb rubber size was more suitable for replacing the ballast particles.


Sign in / Sign up

Export Citation Format

Share Document