shear test
Recently Published Documents


TOTAL DOCUMENTS

1404
(FIVE YEARS 310)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 46 ◽  
pp. 103812
Author(s):  
Sun-Jin Han ◽  
Jungmin Lee ◽  
Jae-Hyun Kim ◽  
Min-Seok Kim ◽  
Kang Su Kim ◽  
...  
Keyword(s):  

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Azin Ettelaei ◽  
Assaad Taoum ◽  
Jon Shanks ◽  
Gregory Nolan

With the increasing availability of fast-growing Eucalyptus plantation logs in Australia in recent years, the timber manufacturing sector has become interested in discovering the opportunities of producing value-added timber products from this resource. Cross-laminated timber (CLT) could be a potential sustainable product recovered from this resource and supply material for commercial buildings. Shear of the inner cross-laminates, known as rolling shear, is one of the governing factors in serviceability and limit state design for this product under out-of-plane loading. This study evaluated the rolling shear (RS) properties of CLT with heterogonous layup configurations using different structural grade Eucalyptus nitens (E. nitens) timber under the planar shear test. Based on the results, Gr and τr values were shown to be significantly correlated with the density of the CLT panel. There was also a positive correlation between the RS modulus and MOR of the CLT panel. The specimens with high MOE in the top and bottom layers indicated the highest τr and Fmax values. This indicated that using high-grade boards in the top and bottom lamellae plays an important role in increasing the RS strength, whereas using them in the cross-layer has a positive contribution in increasing shear modulus. The maximum observed RS strength and modulus ranged from 2.8–3.4 MPa and 54.3–67.9 MPa, respectively, exceeding the RS characteristic values of the resource. The results obtained in this study were comparable to those recommended in European standards for softwood CLT, demonstrating the potential use for eucalypt timber boards in CLT production. This paper provides an important insight into supporting the potential engineering applications of CLT panel products fabricated with eucalypt plantation.


2022 ◽  
Vol 1212 (1) ◽  
pp. 012035
Author(s):  
A Beddu ◽  
H Setiawan ◽  
Nuraida ◽  
M R Anugrah

Abstract Liquefaction process is associated with the loss of the shear strength of the saturated loose sands caused by strong earthquakes. Due to mitigitation of liquefaction hazard, an appropriate mitigation of liquefaction using environmentally friendly methods is critical and becoming increasingly important and unavoidable. The laboratory investigation was carried out to study the shear strength behaviour of liquefiable sand of Petobo treated by agarose on different concentration 1%,3% 5%. A series of direct shear test were conducted under three level of vertical stress 10 kPa, 20 kPa, and 30 kPa on the specimen. It was found that the optimum content of agarose which can be considered is at 1%-3%, using stress ratio (τ/σv) analysis shows that stress ratio decreases with increasing the vertical stress on the same agar content. The implication this result that the application of this method must consider variation of material source and characteristic, and the suitable level of vertical stresses.


2022 ◽  
Vol 10 (3) ◽  
pp. 849-870
Author(s):  
Yujie Huang ◽  
Yifan Zhang ◽  
Zheng Wang ◽  
Assima Dauletbe ◽  
Yao Lu ◽  
...  

2022 ◽  
Vol 2160 (1) ◽  
pp. 012038
Author(s):  
Weifeng Xu ◽  
Xi Wang ◽  
Yuying Shangguan ◽  
Yanhe Li

Abstract In order to study the paste failure mode and ultimate shear bonding force of CFRP plate-steel interface anchor bonding, a single-sided shear test was carried out on a total of 15 carbon fiberboard (CFRP)-steel composite beam structure specimens in five groups. The test results show that for organic adhesives, the uniform anchoring method can improve the bearing capacity of the construction; for organic adhesives, the ultimate shearing when the specimen is peeled with inorganic glue is used. The bonding capacity is greater than that of specimens with organic adhesives.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Istvan Keppler ◽  
Adrienn Bablena ◽  
Nihal D. Salman ◽  
Péter Kiss

PurposeTransportation of the measurement samples from their original place to the measurement site causes significant changes in their mechanical properties. The possibility of making in situ measurements helps to create more precise discrete element models.Design/methodology/approachThe possibility of using in situ modified vane shear test based measurement for the calibration of discrete element models is demonstrated in this work.FindingsThe advantage of employing the adjusted vane test is that the values of in situ measurements can be used for the calibration.Originality/valueThe procedure we present allows us to perform accurate discrete element calibration using data from on-site measurements that can be performed quickly and easily.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 55
Author(s):  
Márton Tamás Birosz ◽  
Mátyás Andó ◽  
Ferenc Safranyik

Additive Manufacturing (AM) became a popular engineering solution not only for Rapid Prototyping (RP) as a part of product development but as an effective solution for producing complex geometries as fully functional components. Even the modern engineering tools, such as the different simulation software, have a shape optimization solution especially for parts created by AM. To extend the application of these methods in this work, the failure properties of the 3D-printed parts have been investigated via shear test measurements. The layer adhesion can be calculated based on the results, which can be used later for further numerical modeling. In conclusion, it can be stated that the layer formation and the structure of the infill have a great influence on the mechanical properties. The layers formed following the conventional zig-zag infill style show a random failure, and the layers created via extruded concentric circles show more predictable load resistance.


Sign in / Sign up

Export Citation Format

Share Document