shear behaviors
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 58)

H-INDEX

11
(FIVE YEARS 6)

2022 ◽  
Vol 141 ◽  
pp. 104493
Author(s):  
Zhihong Zhao ◽  
Tao Lin ◽  
Yuedu Chen ◽  
Xingguang Zhao ◽  
Liang Chen ◽  
...  

Author(s):  
Yue Liang ◽  
Rifeng Xia ◽  
Zeyu Liu ◽  
Chen Ma ◽  
Hongjie Zhang ◽  
...  

In the waterway construction projects of the upper streams of the Yangtze River, crushed mudstone particles are widely used to backfill the foundations of the rock-socketed concrete-filled steel tube (RSCFST) pile. The mudstone particles are prone to being crushed, which influences the mechanical properties of the soil and the interface between the soil and the steel cased on the RSCFST pile. The crushing of the particles will be aggravated by reciprocating shear of the interface when the pile experiences repeating lateral loads. The reciprocating shear of the interface may, therefore, weaken the bearing capacity of the pile. In this study, we develop a new apparatus to study the mechanical properties of the steel–soil interface under a reciprocating shear condition. With this apparatus, a set of large-scale direct shear experiments are carried out with two different boundary conditions, that is, a constant stress boundary and a constant stiffness boundary, respectively. Comparative experiments and parallel experiments are carried out to study the physical properties of steel–mudstone particle interface and the stability of the apparatus. Parallel experiments show that the instrument has good stability. The comparative experiment results also reveal the differences of the shear behaviors of the interface under two conditions. Analysis of the experiment results shows that the normal stiffness condition is closer to the real boundary condition when the soil–steel interface is cyclically sheared. The particle crushing and the attenuation of normal stress is the main reason causing the degrading of the interface.


2021 ◽  
Vol 15 ◽  
pp. e00713
Author(s):  
Hongbo Zhang ◽  
Mingpeng Liu ◽  
Zhang Shuo ◽  
Zhizhong Zhao ◽  
Yuhai Sun ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4088
Author(s):  
Zhengtao Qu ◽  
Sasa Gao ◽  
Yunjie Zhang ◽  
Junhong Jia

Carbon-Kevlar hybrid reinforcement is increasingly used in the domains that have both strength and anti-impact requirements. However, the research on the preforming behaviors of hybrid reinforcement is very limited. This paper aims to investigate the mechanical and preforming behaviors of carbon-Kevlar hybrid reinforcement. The results show that carbon-Kevlar hybrid woven reinforcement presents a unique “double-peak” tensile behavior, which is significantly different from that of single fiber type reinforcement, and the in-plane shear deformation demonstrates its large in-plane shear deformability. Both the tensile and in-plane shear behaviors present insensitivity to loading rate. In the preforming process, yarn slippage and out-of-plane yarn buckling are the two primary types of defects. Locations of these defects are closely related to the punch shape and the initial yarn direction. These defects cannot be alleviated or removed by just increasing the blank holder pressure. In the multi-layer preforming, the compaction between the plies and the friction between yarns simultaneously affect the quality of final preforms. The defect location of multi-layer preforms is the same as that of single-layer, while its defect range is much wider. The results found in this paper could provide useful guidance for the engineering application and preforming modeling of hybrid woven reinforcement.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengnian Wang ◽  
Xinqun Gao ◽  
Honglei Hui ◽  
Wei Ma ◽  
Chong Shi ◽  
...  

The volume fraction of rock blocks plays a particularly significant role in static/dynamic shear behaviors of soil–rock mixtures (SRM). Large-scale cyclic triaxial tests for SRM with different volumetric block proportions (VBPs) were performed at different confining pressures to investigate the reduction of dynamic shear modulus (G) and the increase of damping ratio (λ). Results indicate that VBP has a significant effect on the dynamic behaviors of SRM. The higher VBP is more likely to result in a gentler reduction of G and a faster increase of λ. The variations of dynamic shear modulus ratio (G/G0) and normalized damping ratio (λnor) fall within relatively narrow bands but are very different with gravelly soils and sands due to VBP with particle size larger than 2 mm. The G/G0 and λnor can be characterized by empirical functions about normalized shear strain amplitude (γnor).


2021 ◽  
Vol 242 ◽  
pp. 112613
Author(s):  
Jing Yang ◽  
Peng Hou ◽  
Yong Pan ◽  
Honglei Zhang ◽  
Caiqian Yang ◽  
...  

2021 ◽  
Vol 300 ◽  
pp. 124008
Author(s):  
Yuzhuo Wang ◽  
Qian Hou ◽  
Tiangui Xu ◽  
Shuang Qu ◽  
Bingjie Zhang

Sign in / Sign up

Export Citation Format

Share Document