Natural Language Processing Based Question Answering Using Vector Space Model

Author(s):  
R. Jayashree ◽  
N. Niveditha
2013 ◽  
Vol 07 (03) ◽  
pp. 257-290 ◽  
Author(s):  
KE HAO ◽  
PHILLIP C-Y SHEU ◽  
HIROSHI YAMAGUCHI

This paper addresses semantic search of Web services using natural language processing. First we survey various existing approaches, focusing on the fact that the expensive costs of current semantic annotation frameworks result in limited use of semantic search for large scale applications. We then propose a service search framework based on the vector space model to combine the traditional frequency weighted term-document matrix, the syntactical information extracted from a lexical database and a dependency grammar parser. In particular, instead of using terms as the rows in a term-document matrix, we propose using synsets from WordNet to distinguish different meanings of a word under different contexts as well as clustering different words with similar meanings. Also based on the characteristics of Web services descriptions, we propose an approach to identifying semantically important terms to adjust weightings. Our experiments show that our approach achieves its goal well.


Poetics ◽  
1990 ◽  
Vol 19 (1-2) ◽  
pp. 99-120
Author(s):  
Stefan Wermter ◽  
Wendy G. Lehnert

2020 ◽  
Vol 34 (05) ◽  
pp. 8504-8511
Author(s):  
Arindam Mitra ◽  
Ishan Shrivastava ◽  
Chitta Baral

Natural Language Inference (NLI) plays an important role in many natural language processing tasks such as question answering. However, existing NLI modules that are trained on existing NLI datasets have several drawbacks. For example, they do not capture the notion of entity and role well and often end up making mistakes such as “Peter signed a deal” can be inferred from “John signed a deal”. As part of this work, we have developed two datasets that help mitigate such issues and make the systems better at understanding the notion of “entities” and “roles”. After training the existing models on the new dataset we observe that the existing models do not perform well on one of the new benchmark. We then propose a modification to the “word-to-word” attention function which has been uniformly reused across several popular NLI architectures. The resulting models perform as well as their unmodified counterparts on the existing benchmarks and perform significantly well on the new benchmarks that emphasize “roles” and “entities”.


2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.


2019 ◽  
Vol 2 (1) ◽  
pp. 53-64
Author(s):  
Herwin H Herwin

STMIK Amik Riau memiliki portal pada website http://www.sar.ac.id difungsikan sebagai media penyebaran informasi bagi sivitas akademika dan stakeholder. Rerata pengunjung setiap hari dalam 3 bulan terakhir adalah 150 kunjungan, namun terjadi peningkatan pada saat penerimaan mahasiswa di setiap tahun akademik. Hal ini mengindikasikan terjadinya peningkatan minat masyarakat untuk mengetahui informasi STMIK Amik Riau. Sayangnya, sampai saat ini pemanfaatan portal web site masih satu arah, dari STMIK Amik Riau ke stakeholder dan masyarakat, tidak terjadi sebaliknya. Komunikasi stakeholder dengan PT sehubungan dengan muatan yang ada di dalam portal menggunakan media sosial dan tidak terintegrasi dengan web.  Begitu juga dengan masukan, koreksi, tanggapan, maupun komunikasi lain menggunakan media sosial.  Sampai saat ini, masyarakat yang mengunjungi portal website baik masyarakat luas, maupun stakeholder tidak dapat dideteksi waktu berkunjung sehingga tidak dapat disapa dengan filosofi “3S”, padahal masyarakat luas yang telah berkunjung merupakan pasar potensial untuk di edukasi. Masyarakat yang berkunjung ke portal website, dengan sopan di sapa oleh sistem, kemudian dilanjutkan dengan komunikasi langsung, tersedia mesin yang siap memberikan salam  dan melayani setiap pertanyaan yang diajukan oleh pengunjung. Penelitian ini bertujuan membuat chatbot yang mampu berkomunikasi dengan pengunjung website.  Chatbot  yang telah dibuat diberi nama STMIK Amik Riau Intelligence Virtual Information disingkat SILVI.  Chatbot dibuat berdasarkan Question Answering Systems (QAS), bekerja dengan algoritma kemiripan antara dua teks. Penelitian ini menghasilkan aplikasi yang siap digunakan, diberi nama SILVI, mampu berkomunikasi dengan pengunjung website. Chatbot mengoptimalkan komunikasi seolah tidak menyadari, tetap menganggap lawan bicara adalah pegawai yang tepat dalam tugas pokok dan fungsi.  


Sign in / Sign up

Export Citation Format

Share Document