Autonomous Orbit Determination of Satellites Around Triangular Libration Points in the Earth–Moon System

Author(s):  
Bin Liu ◽  
Xiyun Hou ◽  
Jingshi Tang ◽  
Lin Liu
Author(s):  
L. V. Morrison ◽  
F. R. Stephenson ◽  
C. Y. Hohenkerk ◽  
M. Zawilski

Historical reports of solar eclipses are added to our previous dataset (Stephenson et al. 2016 Proc. R. Soc. A 472 , 20160404 ( doi:10.1098/rspa.2016.0404 )) in order to refine our determination of centennial and longer-term changes since 720 BC in the rate of rotation of the Earth. The revised observed deceleration is −4.59 ± 0.08 × 10 −22  rad s −2 . By comparison the predicted tidal deceleration based on the conservation of angular momentum in the Sun–Earth–Moon system is −6.39 ± 0.03 × 10 −22  rad s −2 . These signify a mean accelerative component of +1.8 ± 0.1 × 10 −22  rad s −2 . There is also evidence of an oscillatory variation in the rate with a period of about 14 centuries.


1999 ◽  
Vol 63 (2) ◽  
pp. 189-196 ◽  
Author(s):  
A.A. Dzhumabayeva ◽  
A.L. Kunitsyn ◽  
A.T. Tuyakbayev

The accurate determination of satellite orbits depends on an adequate accumulation of observations, a sound dynamical theory and a fairly sophisticated sequence of numerical computations. The particular patterns of observation, theory and computation are considered in relation to the objectives of orbit determination. Factors to be taken into account are the type, accuracy and spread of observations; perturbations of the orbit due to air drag, attraction of the Earth, Moon, and Sun, and solar radiation pressure; and the speed and cost of available computers. These factors, together with the overall objectives, determine the main features of the computation; whether to use special or general perturbation techniques, what length of orbit arc to use, what parameters to determine and how to present the results.


Sign in / Sign up

Export Citation Format

Share Document