radial acceleration
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 51)

H-INDEX

17
(FIVE YEARS 6)

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 89-98
Author(s):  
S. V. Kozlov ◽  
Van Cuong Le

A method of long-term combined accumulation of the reflected signal is justified, which provides for its division into disjoint subsets, coherent accumulation in subsets using one of the fast algorithms and subsequent incoherent accumulation of the squares of the modules of the results of processing the subsets. A distinctive method’s feature is the use with incoherent accumulation of maxima of the squares of the moduli of the coherent processing results, that are selected from the range / radial velocity regions in accordance with a given hypothesis about the minimum and maximum values of the target radial velocity and the radial acceleration detection channel setting.The efficiency of the method was confirmed by simulation modeling. Using the theories of ordinal statistics and the method of moments, a method for calculating the probability of correct detection is developed. Estimates of processing losses are made in comparison with coherent and incoherent accumulation algorithms for a signal reflected from a point target, for the case when there is no range and frequency migration. Estimates for the required number of receiver channels are given.


Author(s):  
Hao Li ◽  
Haipeng Geng

In this paper, the design and experimental verification of the rotor system with gas foil bearings are carried out with a vehicle compressor developed in our laboratory. The designed rotating speed 100,000 rpm with 50 g/s mass flow and 1.8 pressure ratio. The journal foil bearing with inhomogeneous bump foil is designed and tested by a push-pull device to evaluate the structure stiffness of bump foil. The result shows that the stiffness curves of two bearings with the same manufacturing process are not consistent, which indicates the uncertainly in the manufacture of foil bearings and it is necessary to obtain the foil stiffness data by experiment. A multi-disc model is established to simulate the impeller in the finite element model (FEM) for the vehicle compressor is too short to ignore the impeller width. The stiffness and damping coefficients of foil bearings are used to proceed rotordynamic analysis. The vibration experiments indicate that with the operating speed enhancement, the center orbit falls smaller. When the rotating speed increases to about 60,000 rpm, two sub-synchronous frequency occur and remain at 150 and 307 Hz finally. Two radial acceleration peaks appear at 9736 and 25,828 rpm respectively, which are close to the critical speed of damped Campbell diagram. The compressor performance map shows that the pressure ratio of the compressor is slightly lower than the design value due to the eccentricity of the foil bearing, which can be solved by increasing the operating speed. This paper provides some reference value for the design and experiment of vehicle compressor supported by the foil bearings.


2021 ◽  
Author(s):  
Rahmat Ashari ◽  
Owen Sorensen ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Matthew Isbell ◽  
...  

Abstract Although numerous studies have investigated how shocks and vibrations contribute to bottomhole assembly (BHA) failures during hole-making, very few have explicitly focused on shock and vibrational behaviors during drillpipe connections. This study adopts a data-driven approach to explore various connection practices and their associated shocks and vibrations, aiming to propose optimum "connection recipes" that minimize negative drillstring impacts during connections. This study utilized data from surface sensors as well as downhole accelerometers and gyroscopes installed both at a downhole sub and the bit. In total, 520 connections from 5 lateral sections were studied. Several quality checks and corrections were performed to ensure synchronization between surface and downhole data. The analyses focused on two connection phases specifically: going off-bottom and going back to bottom. The presence of stick-slip events and high magnitudes of both maximum and root mean squared (RMS) radial accelerations were examined together with the associated surface drilling parameters. Various visualization approaches were performed to help demonstrate the vibration and shock behaviors resulting from different going off-bottom and going back to bottom practices. The analyses showed that restarting surface rotational speed at low values (≤ 40 RPM) risks inducing stick-slip events when going back to bottom. When the surface RPM was increased sufficiently, a notable reduction in RMS radial acceleration was observed. Maximum radial acceleration magnitude was highest before WOB application, which could be mitigated by immediate WOB re-application. Appreciable variation in the maximum radial acceleration was apparent when restarting at low (≤ 15 klbf) WOB values. When going off-bottom, drilling off should be accompanied by a reduction in the surface rotational speed to avoid a jump in the maximum radial acceleration values. This work provides suggestions on how to execute better connections. Since the impacts of shocks and vibrations during connections have previously been largely overlooked, this study fills a knowledge gap to help establish better practices and automation routines to improve the lifespan of the bit and downhole tools.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
J. W. Moffat ◽  
V. T. Toth

AbstractWe investigate the contributions of the Friedmann–Lemaître–Robertson–Walker metric of the standard cosmology as an asymptotic boundary condition on the first-order approximation of the gravitational field in Moffat’s theory of modified gravity (MOG). We also consider contributions due to the fact that the MOG theory does not satisfy the shell theorem or Birkhoff’s theorem, resulting in what is known as the “external field effect” (EFE). We show that while both these effects add small contributions to the radial acceleration law, the result is orders of magnitude smaller than the radial acceleration in spiral galaxies.


2021 ◽  
Vol 92 (7) ◽  
pp. 579-587
Author(s):  
Matt Wilkes ◽  
Geoff Long ◽  
Rebecca Charles ◽  
Heather Massey ◽  
Clare Eglin ◽  
...  

INTRODUCTION: The paragliding reserve parachute system is safety-critical but underused, unstandardized, and known to fail. This study aimed to characterize reserve parachute deployment under radial acceleration to make recommendations for system design and paraglider pilot training.METHODS: There were 88 licensed amateur paraglider pilots who were filmed deploying their reserve parachutes from a centrifuge. Of those, 43 traveled forward at 4 G simulating a spiral dive, and 45 traveled backward at 3 G simulating a rotational maneuver known as SAT. Tests incorporated ecologically valid body, hand, and gaze positions, and cognitive loading and switching akin to real deployment. The footage was reviewed by subject matter experts and compared to previous work in linear acceleration.RESULTS: Of the pilots, 2.3 failed to extract the reserve container from the harness. SAT appeared more cognitively demanding than spiral, despite lower G. Participants located the reserve handle by touch not sight. The direction of travel influenced their initial contact with the harness: 82.9 searched first on their hip in spiral, 63.4 searched first on their thigh in SAT. Search patterns followed skeletal landmarks. Participants had little directional control over their throw.CONCLUSIONS: Paraglider pilots are part of the reserve system. Maladaptive behaviors observed under stress highlighted that components must work in harmony with pilots natural responses, with minimal cognitive demands or need for innovation or problem-solving. Recommendations include positioning prominent, tactile reserve handles overlying the pilots hip; deployment bags extractable with any angle of pull; deployment in a single sweeping backward action; and significantly increasing reserve deployment drills.Wilkes M, Long G, Charles R, Massey H, Eglin C, Tipton MJ. Paraglider reserve parachute deployment under radial acceleration. Aerosp Med Hum Perform. 2021; 92(7):579587.


2021 ◽  
Vol 650 ◽  
pp. A113
Author(s):  
Margot M. Brouwer ◽  
Kyle A. Oman ◽  
Edwin A. Valentijn ◽  
Maciej Bilicki ◽  
Catherine Heymans ◽  
...  

We present measurements of the radial gravitational acceleration around isolated galaxies, comparing the expected gravitational acceleration given the baryonic matter (gbar) with the observed gravitational acceleration (gobs), using weak lensing measurements from the fourth data release of the Kilo-Degree Survey (KiDS-1000). These measurements extend the radial acceleration relation (RAR), traditionally measured using galaxy rotation curves, by 2 decades in gobs into the low-acceleration regime beyond the outskirts of the observable galaxy. We compare our RAR measurements to the predictions of two modified gravity (MG) theories: modified Newtonian dynamics and Verlinde’s emergent gravity (EG). We find that the measured relation between gobs and gbar agrees well with the MG predictions. In addition, we find a difference of at least 6σ between the RARs of early- and late-type galaxies (split by Sérsic index and u − r colour) with the same stellar mass. Current MG theories involve a gravity modification that is independent of other galaxy properties, which would be unable to explain this behaviour, although the EG theory is still limited to spherically symmetric static mass models. The difference might be explained if only the early-type galaxies have significant (Mgas ≈ M⋆) circumgalactic gaseous haloes. The observed behaviour is also expected in Λ-cold dark matter (ΛCDM) models where the galaxy-to-halo mass relation depends on the galaxy formation history. We find that MICE, a ΛCDM simulation with hybrid halo occupation distribution modelling and abundance matching, reproduces the observed RAR but significantly differs from BAHAMAS, a hydrodynamical cosmological galaxy formation simulation. Our results are sensitive to the amount of circumgalactic gas; current observational constraints indicate that the resulting corrections are likely moderate. Measurements of the lensing RAR with future cosmological surveys (such as Euclid) will be able to further distinguish between MG and ΛCDM models if systematic uncertainties in the baryonic mass distribution around galaxies are reduced.


Sign in / Sign up

Export Citation Format

Share Document