Combined Autonomous Orbit Determination of GEO/IGSO Satellites on the Space-Based Probe

Author(s):  
Peng Liu ◽  
Xi-Yun Hou
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Youtao Gao ◽  
Tanran Zhao ◽  
Bingyu Jin ◽  
Junkang Chen ◽  
Bo Xu

In order to improve the accuracy of the dynamical model used in the orbit determination of the Lagrangian navigation satellites, the nonlinear perturbations acting on Lagrangian navigation satellites are estimated by a neural network. A neural network based state observer is applied to autonomously determine the orbits of Lagrangian navigation satellites using only satellite-to-satellite range. This autonomous orbit determination method does not require linearizing the dynamical mode. There is no need to calculate the transition matrix. It is proved that three satellite-to-satellite ranges are needed using this method; therefore, the navigation constellation should include four Lagrangian navigation satellites at least. Four satellites orbiting on the collinear libration orbits are chosen to construct a constellation which is used to demonstrate the utility of this method. Simulation results illustrate that the stable error of autonomous orbit determination is about 10 m. The perturbation can be estimated by the neural network.


2011 ◽  
Vol 64 (S1) ◽  
pp. S162-S179 ◽  
Author(s):  
Haihong Wang ◽  
Zhonggui Chen ◽  
Jinjun Zheng ◽  
Haibin Chu

Autonomous orbit determination of a navigation constellation is the process by which the orbit parameters of navigation satellites are autonomously calibrated onboard the satellites without the need for external aids. It commonly uses a satellite onboard data processing unit and a filtering method to process the measurements of inter-satellite ranges. The onboard data processing unit is the main module of autonomous navigation systems. In this paper, the two main factors that affect the accuracy of autonomous orbit determination for a navigation constellation are discussed first, and then a distributed onboard algorithm for autonomous orbit determination of navigation satellites is proposed. This method is based on a long-term ephemeris prediction and is suitable for the satellite hardware capability. The main feature of this method is that both the distributed computing method and an onboard analytical state transition matrix are used to process inter-satellite range measurements. One of the main advantages of this approach is high-speed computing since the amount of calculations needed is significantly less than that of the centralised computing method and those distributed methods that need to use an onboard numerical integrator. Another advantage of this approach is that the use of the onboard analytical state transition matrix algorithm can save a great amount of resources for both ground-to-satellite data transmissions and data storage units in satellites’ hardware. This could result in substantial cost reduction for space missions. Finally, a simulation method used for testing the proposed algorithm is presented. Results of tests over a period of 90 days show that the user range error of autonomous orbit determination derived from the proposed method is less than three metres.


2018 ◽  
Vol 92 (10) ◽  
pp. 1155-1169 ◽  
Author(s):  
Chengpan Tang ◽  
Xiaogong Hu ◽  
Shanshi Zhou ◽  
Li Liu ◽  
Junyang Pan ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Youtao Gao ◽  
Junkang Chen ◽  
Bo Xu ◽  
Jianhua Zhou

The accuracy of autonomous orbit determination of Lagrangian navigation constellation will affect the navigation accuracy for the deep space probes. Because of the special dynamical characteristics of Lagrangian navigation satellite, the error caused by different estimation algorithm will cause totally different autonomous orbit determination accuracy. We apply the extended Kalman filter and the fading–memory filter to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The accuracy of autonomous orbit determination using fading-memory filter can improve 50% compared to the autonomous orbit determination accuracy using extended Kalman filter. We proposed an integrated Kalman fading filter to smooth the process of autonomous orbit determination and improve the accuracy of autonomous orbit determination. The square root extended Kalman filter is introduced to deal with the case of inaccurate initial error variance matrix. The simulations proved that the estimation method can affect the accuracy of autonomous orbit determination greatly.


Sign in / Sign up

Export Citation Format

Share Document