An Assessment of the Deterioration of Flexural Capacity of a Pretensioned Concrete Girder Due to Strand Corrosion

Author(s):  
G. Resmi ◽  
Amlan K. Sengupta ◽  
Radhakrishna G. Pillai
Author(s):  
Amir Farid Momeni ◽  
Robert J. Peterman ◽  
B. Terry Beck ◽  
Chih-Hang John Wu ◽  
Naga Narendra B. Bodapati

A study was conducted to determine the effect of concrete release strength on the development length and flexural capacity of members utilizing five different 5.32-mm-diameter prestressing wires that are commonly used in the manufacture of prestressed concrete railroad ties worldwide. These included two chevron-indented wires with different indent depths, one spiral-indented wire, one dot-indented wire, and one smooth wire (with no surface indentation). A consistent concrete mixture was used for the manufacture of all test specimens, and the different release strengths were obtained by allowing the specimens to cure for different amounts of time prior to de-tensioning. Each prismatic specimen (prism) had a 3.5″ (88.9 mm) × 3.5″ (88.9 mm) square cross section with four wires arranged symmetrically. The prisms were identical except for the wire type and the compressive strength at the time of de-tensioning. All four wires were each initially tensioned to 7000 pounds (31.14 KN) and then de-tensioned gradually when the concrete compressive strength reached 3500 (24.13 MPa), 4500 (31.03 MPa) and 6000 (41.37 MPa) psi. Precise de-tensioning strengths were ensured by testing 4-in.-diameter (101.6 mm) × 8-in.-long (203.2 mm) compression strength cylinders that were temperature match-cured. The prisms were loaded in 3-point-bending to determine the ultimate bond characteristics of each reinforcement type for the different concrete release strengths. A loading rate of 300 lb/min (1334 N/min) was applied at mid-span and the maximum sustained moment was calculated for each test. Two 69-in.-long (175.26 cm) prisms, each having different concrete release strength, were tested with each of the 5 wire types. These prisms were tested at both ends, with a different embedment length assessed at each end. Thus, for each wire type and concrete release strength evaluated, a total of 4 tests were conducted for a total of 60 tests (5 wire types × 3 release strengths × 4 tested embedment lengths). Test results indicate that the concrete compressive strength at de-tensioning can have a direct impact on the ultimate flexural capacity of the members, and this has significant design implications for pretensioned concrete railroad ties. Results are discussed and recommendations made.


2020 ◽  
Vol 21 (3) ◽  
pp. 437-447 ◽  
Author(s):  
Bashir Ahmad Aasim ◽  
Abdul Khaliq Karimi ◽  
Jun Tomiyama ◽  
Ömer Aydan

Author(s):  
Amir Farid Momeni ◽  
Robert J. Peterman ◽  
B. Terry Beck ◽  
Chih-Hang John Wu ◽  
Naga Narendra B. Bodapati

Load tests were conducted on pretensioned members made with five different strands (three 7-wire strands and two 3-wire strands) to determine the effect of concrete release strength on the development length and flexural capacity of members. Strands named generically SA, SC, SD, SE and SF and they were all indented except SA (no surface indentation). All strands had diameter of 3/8″ (9.52 mm) except SC which had diameter of 5/16″ (7.94 mm). Among all types of strands used in manufacturing of test prisms, SC and SF were 3-wire strands, while SA, SD and SE were 7-wire strands. A consistent concrete mixture was used for the manufacture of all test specimens, and the different release strengths were obtained by allowing the specimens to cure for different amounts of time prior to de-tensioning. For SA, SD, SE and SF strands, each prismatic specimen (prism) had a 5.5″ (139.7 mm) × 5.5″ (139.7 mm) square cross section with four strands arranged symmetrically. However, prisms made with SC strand had 4.5″ (114.3 mm) × 4.5″ (114.3 mm) square cross section with four strands arranged symmetrically. The prisms were identical except for the strand type and the compressive strength at the time of de-tensioning. All four strands were pulled and de-tensioned gradually when the concrete compressive strength reached 3500 (24.13 MPa), 4500 (31.03 MPa) and 6000 (41.37 MPa) psi. Precise de-tensioning strengths were ensured by testing 4-in.-diameter (101.6 mm) × 8-in.-long (203.2 mm) compression strength cylinders that were temperature match-cured. The prisms were loaded in 3-point-bending to determine the ultimate bond characteristics of each reinforcement type for the different concrete release strengths. A loading rate of 900 lb/min (4003 N/min) for 5.5″ (139.7 mm) × 5.5″ (139.7 mm) prisms was applied at mid-span and the maximum sustained moment was calculated for each. Same procedure with loading rate of 500 lb/min (2224 N/min) was applied to 4.5″ (114.3 mm) × 4.5″ (114.3 mm) prisms. Three 69-in.-long (175.26 cm) prisms, each having different concrete release strength, were tested with each of the 5 strand types. Two out of three testing prisms were tested at only one end and one was tested at its both ends. Thus, for each strand type and concrete release strength evaluated, a total of 4 tests were conducted for a total of 60 tests (5 strand types × 3 release strengths × 4 tested embedment lengths). Test results indicate that the concrete compressive strength at de-tensioning can have a direct impact on the ultimate flexural capacity of the members, and this has significant design implications for pretensioned concrete railroad ties. Results are discussed and recommendations made.


PCI Journal ◽  
2000 ◽  
Vol 45 (2) ◽  
pp. 96-105
Author(s):  
M. Saiid Saiidi ◽  
Yolanda Labia ◽  
Bruce Douglas

PCI Journal ◽  
2003 ◽  
Vol 48 (2) ◽  
pp. 28-52 ◽  
Author(s):  
I. A. Weigel ◽  
Stephen J. Seguirant ◽  
Richard Brice ◽  
Bijan Khaleghi

Sign in / Sign up

Export Citation Format

Share Document