Analysis of the Impact of Diverse Pulse Shaping Filters on BER of GFDM System Incorporated with MRC Diversity Combining Scheme

Author(s):  
Pawan Kumar ◽  
Lavish Kansal
Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4037
Author(s):  
Shania Stewart ◽  
Ha H. Nguyen ◽  
Robert Barton ◽  
Jerome Henry

This paper presents two methods to optimize LoRa (Low-Power Long-Range) devices so that implementing multiplier-less pulse shaping filters is more economical. Basic chirp waveforms can be generated more efficiently using the method of chirp segmentation so that only a quarter of the samples needs to be stored in the ROM. Quantization can also be applied to the basic chirp samples in order to reduce the number of unique input values to the filter, which in turn reduces the size of the lookup table for multiplier-less filter implementation. Various tests were performed on a simulated LoRa system in order to evaluate the impact of the quantization error on the system performance. By examining the occupied bandwidth, fast Fourier transform used for symbol demodulation, and bit-error rates, it is shown that even performing a high level of quantization does not cause significant performance degradation. Therefore, the memory requirements of LoRa devices can be significantly reduced by using the methods of chirp segmentation and quantization so as to improve the feasibility of implementing multiplier-less filters in LoRa devices.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 270 ◽  
Author(s):  
Anh Tuyen Le ◽  
Le Chung Tran ◽  
Xiaojing Huang ◽  
Yingjie Jay Guo

Self-interference (SI) is the key issue that prevents in-band full-duplex (IBFD) communications from being practical. Analog multi-tap adaptive filter is an efficient structure to cancel SI since it can capture the nonlinear components and noise in the transmitted signal. Analog least mean square (ALMS) loop is a simple adaptive filter that can be implemented by purely analog means to sufficiently mitigate SI. Comprehensive analyses on the behaviors of the ALMS loop have been published in the literature. This paper proposes a practical structure and presents an implementation of the ALMS loop. By employing off-the-shelf components, a prototype of the ALMS loop including two taps is implemented for an IBFD system operating at the carrier frequency of 2.4 GHz. The prototype is firstly evaluated in a single carrier signaling IBFD system with 20 MHz and 50 MHz bandwidths, respectively. Measured results show that the ALMS loop can provide 39 dB and 33 dB of SI cancellation in the radio frequency domain for the two bandwidths, respectively. Furthermore, the impact of the roll-off factor of the pulse shaping filter on the SI cancellation level provided by the prototype is presented. Finally, the experiment with multicarrier signaling shows that the performance of the ALMS loop is the same as that in the single carrier system. These experimental results validate the theoretical analyses presented in our previous publications on the ALMS loop behaviors.


2006 ◽  
Vol 14 (26) ◽  
pp. 13164 ◽  
Author(s):  
Chen-Bin Huang ◽  
Zhi Jiang ◽  
Daniel E. Leaird ◽  
Andrew M. Weiner

Sign in / Sign up

Export Citation Format

Share Document