The Complete Theory on Two Pages

Author(s):  
Helmut Günther ◽  
Volker Müller
Keyword(s):  
2019 ◽  
Author(s):  
Muhammad Ali

This paper proposes a Gadenkan experiment named “Observer’s Dilemma”, to investigate the probabilistic nature of observable phenomena. It has been reasoned that probabilistic nature in, otherwise uniquely deterministic phenomena can be introduced due to lack of information of underlying governing laws. Through theoretical consequences of the experiment, concepts of ‘Absolute Complete’ and ‘Observably Complete” theories have been introduced. Furthermore, nature of reality being ‘absolute’ and ‘observable’ have been discussed along with the possibility of multiple realities being true for observer. In addition, certain aspects of quantum mechanics have been interpreted. It has been argued that quantum mechanics is an ‘observably complete’ theory and its nature is to give probabilistic predictions. Lastly, it has been argued that “Everettian - Many world” interpretation of quantum mechanics is very real and true in the framework of ‘observable nature of reality’, for humans.


Author(s):  
Jonathan Dancy

This chapter considers how to locate moral reasoning in terms of the structures that have emerged so far. It does not attempt to write a complete theory of moral thought. Its main purpose is rather to reassure us that moral reasoning—which might seem to be somehow both practical and theoretical at once—can be perfectly well handled using the tools developed in previous chapters. It also considers the question how we are to explain practical reasoning—and practical reasons more generally—by contrast with the explanation of theoretical reasons and reasoning offered in Chapter 4. This leads us to the first appearance of the Primacy of the Practical. The second appearance concerns reasons to intend.


1979 ◽  
Vol 9 (3-4) ◽  
pp. 237-259 ◽  
Author(s):  
Steven M. Moore

Analysis ◽  
2018 ◽  
Vol 79 (3) ◽  
pp. 436-448 ◽  
Author(s):  
Michael McDermott

Abstract Intuition says that choosing to create a miserable person is wrong, but choosing not to create a happy one is not; this is ‘the Asymmetry’. There is a complete theory which agrees – the ‘Harm Minimization’ theory. A well-known objection is that this theory rejects Parfit’s principle of ‘No Difference’. But No Difference has less intuitive support than the Asymmetry, and there seems to be no complete theory which agrees with both. There is, however, a more serious problem for Harm Minimization: it says it is wrong to create happy people if we could have made some of them happier at the expense of others. The purpose of this note is to describe a complete theory which agrees with the Asymmetry and avoids this unacceptable consequence; like Harm Minimization, it rejects No Difference.


2018 ◽  
Vol 83 (1) ◽  
pp. 84-102
Author(s):  
DOUGLAS ULRICH

AbstractWe show there exists a complete theory in a language of size continuum possessing a unique atomic model which is not constructible. We also show it is consistent with $ZFC + {\aleph _1} < {2^{{\aleph _0}}}$ that there is a complete theory in a language of size ${\aleph _1}$ possessing a unique atomic model which is not constructible. Finally we show it is consistent with $ZFC + {\aleph _1} < {2^{{\aleph _0}}}$ that for every complete theory T in a language of size ${\aleph _1}$, if T has uncountable atomic models but no constructible models, then T has ${2^{{\aleph _1}}}$ atomic models of size ${\aleph _1}$.


2018 ◽  
Vol 2018 (740) ◽  
pp. 63-76 ◽  
Author(s):  
Jing-Jing Huang

AbstractTen years ago, Beresnevich–Dickinson–Velani [Mem. Amer. Math. Soc. 179 (2006), no. 846] initiated a project that develops the general Hausdorff measure theory of dual approximation on non-degenerate manifolds. In particular, they established the divergence part of the theory based on their general ubiquity framework. However, the convergence counterpart of the project remains wide open and represents a major challenging question in the subject. Until recently, it was not even known for any single non-degenerate manifold. In this paper, we settle this problem for all curves in{\mathbb{R}^{2}}, which represents the first complete theory of its kind for a general class of manifolds.


1982 ◽  
Vol 47 (3) ◽  
pp. 605-624 ◽  
Author(s):  
Douglas N. Hoover

AbstractWe show that every formula of Lω1P is equivalent to one which is a propositional combination of formulas with only one quantifier. It follows that the complete theory of a probability model is determined by the distribution of a family of random variables induced by the model. We characterize the class of distribution which can arise in such a way. We use these results together with a form of de Finetti’s theorem to prove an almost sure interpolation theorem for Lω1P.


2018 ◽  
Vol 18 (02) ◽  
pp. 1850006 ◽  
Author(s):  
Ilijas Farah ◽  
Menachem Magidor

This paper is about omitting types in logic of metric structures introduced by Ben Yaacov, Berenstein, Henson and Usvyatsov. While a complete type is omissible in some model of a countable complete theory if and only if it is not principal, this is not true for the incomplete types by a result of Ben Yaacov. We prove that there is no simple test for determining whether a type is omissible in a model of a theory [Formula: see text] in a countable language. More precisely, we find a theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set and a complete theory in a countable language such that the set of types omissible in some of its models is a complete [Formula: see text] set. Two more unexpected examples are given: (i) a complete theory [Formula: see text] and a countable set of types such that each of its finite sets is jointly omissible in a model of [Formula: see text], but the whole set is not and (ii) a complete theory and two types that are separately omissible, but not jointly omissible, in its models.


10.29007/39jj ◽  
2018 ◽  
Author(s):  
Peter Wegner ◽  
Eugene Eberbach ◽  
Mark Burgin

In the paper we prove in a new and simple way that Interactionmachines are more powerful than Turing machines. To do thatwe extend the definition of Interaction machines to multiple interactivecomponents, where each component may perform simple computation.The emerging expressiveness is due to the power of interaction and allowsto accept languages not accepted by Turing machines. The mainresult that Interaction machines can accept arbitrary languages over agiven alphabet sheds a new light to the power of interaction. Despite ofthat we do not claim that Interaction machines are complete. We claimthat a complete theory of computer science cannot exist and especially,Turing machines or Interaction machines cannot be a complete model ofcomputation. However complete models of computation may and shouldbe approximated indefinitely and our contribution presents one of suchattempts.


Sign in / Sign up

Export Citation Format

Share Document