A Neural Based Comparative Analysis for Feature Extraction from ECG Signals

Author(s):  
Giansalvo Cirrincione ◽  
Vincenzo Randazzo ◽  
Eros Pasero
Author(s):  
Suman Lata ◽  
Rakesh Kumar

ECG feature extraction has an important role in identifying a number of cardiac diseases. Lots of work has been done in this field but the most important challenges faced in previous work are the selection of proper R-peaks and R-R intervals due to the lack of appropriate pre-processing steps like decomposition, smoothing, filtering, etc., and the optimization of the features for proper classification. In this article, DWT-based pre-processing and ABC is used for optimization of features which helps to achieve better classification accuracy. It is utilized for initial diagnosis of abnormalities. The signals are taken from MIT-BIH arrhythmia database for the analysis. The aim of the research is to classification of six diseases; Normal, Atrial, Paced, PVC, LBBB, RBBB with an ABC optimization algorithm and an ANN classification algorithm on the basis of the extracted features. Various parameters, like, FAR, FRR, and accuracy are measured for the execution. Comparative analysis is shown of the proposed and the existing work to depict the effectiveness of the work.


2022 ◽  
pp. 933-954
Author(s):  
Suman Lata ◽  
Rakesh Kumar

ECG feature extraction has an important role in identifying a number of cardiac diseases. Lots of work has been done in this field but the most important challenges faced in previous work are the selection of proper R-peaks and R-R intervals due to the lack of appropriate pre-processing steps like decomposition, smoothing, filtering, etc., and the optimization of the features for proper classification. In this article, DWT-based pre-processing and ABC is used for optimization of features which helps to achieve better classification accuracy. It is utilized for initial diagnosis of abnormalities. The signals are taken from MIT-BIH arrhythmia database for the analysis. The aim of the research is to classification of six diseases; Normal, Atrial, Paced, PVC, LBBB, RBBB with an ABC optimization algorithm and an ANN classification algorithm on the basis of the extracted features. Various parameters, like, FAR, FRR, and accuracy are measured for the execution. Comparative analysis is shown of the proposed and the existing work to depict the effectiveness of the work.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Manab Kumar Das ◽  
Samit Ari

Classification of electrocardiogram (ECG) signals plays an important role in clinical diagnosis of heart disease. This paper proposes the design of an efficient system for classification of the normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a mixture of features. In this paper, two different feature extraction methods are proposed for classification of ECG beats: (i) S-transform based features along with temporal features and (ii) mixture of ST and WT based features along with temporal features. The extracted feature set is independently classified using multilayer perceptron neural network (MLPNN). The performances are evaluated on several normal and abnormal ECG signals from 44 recordings of the MIT-BIH arrhythmia database. In this work, the performances of three feature extraction techniques with MLP-NN classifier are compared using five classes of ECG beat recommended by AAMI (Association for the Advancement of Medical Instrumentation) standards. The average sensitivity performances of the proposed feature extraction technique for N, S, F, V, and Q are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%, respectively. The experimental results demonstrate that the proposed feature extraction techniques show better performances compared to other existing features extraction techniques.


2021 ◽  
Author(s):  
Emir Akcin ◽  
Kemal Sami Isleyen ◽  
Enes Ozcan ◽  
Alaa Ali Hameed ◽  
Erdal Alimovski ◽  
...  

Author(s):  
R. Karthik ◽  
Dhruv Tyagi ◽  
Amogh Raut ◽  
Soumya Saxena ◽  
K. P. Bharath ◽  
...  

2021 ◽  
pp. 405-416
Author(s):  
Divya Acharya ◽  
Mansi Lende ◽  
Kartavya Lathia ◽  
Sanjana Shirgurkar ◽  
Nikhil Kumar ◽  
...  

Measurement ◽  
2020 ◽  
Vol 156 ◽  
pp. 107580 ◽  
Author(s):  
João Paulo do Vale Madeiro ◽  
João Alexandre Lobo Marques ◽  
Tao Han ◽  
Roberto Coury Pedrosa

Sign in / Sign up

Export Citation Format

Share Document