Region-Based Background Modeling and Subtraction Method Using Textural Features

Author(s):  
Samah El kah ◽  
Siham Aqel ◽  
Abdelouahed Sabri ◽  
Abdellah Aarab
2015 ◽  
Vol 738-739 ◽  
pp. 779-783
Author(s):  
Jin Hua Sun ◽  
Cui Hua Tian

In view of the problems existed in moving object detection in video surveillance system, background subtraction method is adopted and combined with Surendra algorithm for background modeling, an algorithm of detecting moving object from video is proposed, and OpenCV programming is adopted in Visual c ++ 6.0 for implementation. Experimental results indicate that the algorithm can accurately detect and identify moving object in video by reading the image sequence of surveillance video, the validity of the algorithm is verified.


2014 ◽  
Vol 989-994 ◽  
pp. 2310-2313
Author(s):  
Yong Zhu ◽  
Dian Hong Wang ◽  
Jing Long Liu

Single Gaussian background modeling is often used in the static scene. In order to overcome the deficiency of the traditional single Gaussian background subtraction method, an improved adaptive background modeling algorithm was proposed. First, the number of each pixel in the image determined as foreground that were as the parameters of each pixel update rate were counted respectively. So the original fixed update rate was transformed into the dynamic update rate changing with the parameter. In this way, the phenomena of ghosting and shelling was suppressed effectively in the traditional single model of Gauss. Finally, foreground objects were obtained by using the method of shadow removal based on morphological reconstruction. The experimental results indicate that the algorithm can quickly and accurately establish and update the background model, and extract the moving object effectively. Compared with existing approaches, experimental results with different real scenes demonstrate the robustness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Wang ◽  
Qian Lu ◽  
Dianhong Wang ◽  
Wei Liu

Robust and efficient foreground extraction is a crucial topic in many computer vision applications. In this paper, we propose an accurate and computationally efficient background subtraction method. The key idea is to reduce the data dimensionality of image frame based on compressive sensing and in the meanwhile apply sparse representation to build the current background by a set of preceding background images. According to greedy iterative optimization, the background image and background subtracted image can be recovered by using a few compressive measurements. The proposed method is validated through multiple challenging video sequences. Experimental results demonstrate the fact that the performance of our approach is comparable to those of existing classical background subtraction techniques.


2013 ◽  
Vol 462-463 ◽  
pp. 421-427
Author(s):  
Jian Hua Ding ◽  
Yao Lu ◽  
Wei Huang ◽  
Ming Qin

Background subtraction is often used to detect the moving objects from static cameras. The difficult of defect detecting of printing matter is how to detect the unknown flaws in complicate background effectively. Inspired by the background modeling approach for moving objects detection, a background modeling method in defect detection of printed image is suggested in this paper. Those pixels without defects are regarded as background, while the flaw pixels are defined as foreground. Firstly, we select LBP histogram as texture feature and HSV histogram as color feature to model the background respectively. Then, lots of printed images in which there are no defects are used to update these two models. Finally, we utilize the models to detect defects of printing images. Experimental results show that this background model works well in our defect detection.


2019 ◽  
Vol 70 (3) ◽  
pp. 214-224
Author(s):  
Bui Ngoc Dung ◽  
Manh Dzung Lai ◽  
Tran Vu Hieu ◽  
Nguyen Binh T. H.

Video surveillance is emerging research field of intelligent transport systems. This paper presents some techniques which use machine learning and computer vision in vehicles detection and tracking. Firstly the machine learning approaches using Haar-like features and Ada-Boost algorithm for vehicle detection are presented. Secondly approaches to detect vehicles using the background subtraction method based on Gaussian Mixture Model and to track vehicles using optical flow and multiple Kalman filters were given. The method takes advantages of distinguish and tracking multiple vehicles individually. The experimental results demonstrate high accurately of the method.


Sign in / Sign up

Export Citation Format

Share Document