objects detection
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 137)

H-INDEX

14
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Navneet Ghedia ◽  
Chandresh Vithalani ◽  
Ashish M. Kothari ◽  
Rohit M. Thanki

2021 ◽  
pp. 5008-5023
Author(s):  
Rasool D. Haameid ◽  
Bushra Q. Al-Abudi ◽  
Raaid N. Hassan

This work explores the designing a system of an automated unmanned aerial vehicles (UAV( for objects detection, labelling, and localization using deep learning. This system takes pictures with a low-cost camera and uses a GPS unit to specify the positions. The data is sent to the base station via Wi-Fi connection. The proposed system consists of four main parts. First, the drone, which was assembled and installed, while a Raspberry Pi4 was added and the flight path was controlled. Second, various programs that were installed and downloaded to define the parts of the drone and its preparation for flight. In addition, this part included programs for both Raspberry Pi4 and servo, along with protocols for communication, video transmission, and sending and receiving signals between the drone and the computer. Third, a real-time, modified, one dimensional convolutional neural network (1D-CNN) algorithm, which was applied to detect and determine the type of the discovered objects (labelling). Fourth, GPS devices, which were used to determine the location of the drone starting and ending points . Trigonometric functions were then used for adjusting the camera angle and the drone altitude to calculate the direction of the detected object automatically. According to the performance evaluation conducted, the implemented system is capable of meeting the targeted requirements.


Drones ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Christos Chaschatzis ◽  
Chrysoula Karaiskou ◽  
Efstathios G. Mouratidis ◽  
Evangelos Karagiannis ◽  
Panagiotis G. Sarigiannidis

Recent technological developments in the primary sector and machine learning algorithms allow the combined application of many promising solutions in precision agriculture. For example, the YOLOv5 (You Only Look Once) and ResNet Deep Learning architecture provide high-precision real-time identifications of objects. The advent of datasets from different perspectives provides multiple benefits, such as spheric view of objects, increased information, and inference results from multiple objects detection per image. However, it also raises crucial obstacles such as total identifications (ground truths) and processing concerns that can lead to devastating consequences, including false-positive detections with other erroneous conclusions or even the inability to extract results. This paper introduces experimental results from the machine learning algorithm (Yolov5) on a novel dataset based on perennial fruit crops, such as sweet cherries, aiming to enhance precision agriculture resiliency. Detection is oriented on two points of interest: (a) Infected leaves and (b) Infected branches. It is noteworthy that infected leaves or branches indicate stress, which may be due to either a stress/disease (e.g., Armillaria for sweet cherries trees, etc.) or other factors (e.g., water shortage, etc). Correspondingly, the foliage of a tree shows symptoms, while this indicates the stages of the disease.


2021 ◽  
Vol 13 (24) ◽  
pp. 4971
Author(s):  
Congcong Wang ◽  
Wenbin Sun ◽  
Deqin Fan ◽  
Xiaoding Liu ◽  
Zhi Zhang

The characteristics of a wide variety of scales about objects and complex texture features of high-resolution remote sensing images make deep learning-based change detection methods the mainstream method. However, existing deep learning methods have problems with spatial information loss and insufficient feature representation, resulting in unsatisfactory effects of small objects detection and boundary positioning in high-resolution remote sensing images change detection. To address the problems, a network architecture based on 2-dimensional discrete wavelet transform and adaptive feature weighted fusion is proposed. The proposed network takes Siamese network and Nested U-Net as the backbone; 2-dimensional discrete wavelet transform is used to replace the pooling layer; and the inverse transform is used to replace the upsampling to realize image reconstruction, reduce the loss of spatial information, and fully retain the original image information. In this way, the proposed network can accurately detect changed objects of different scales and reconstruct change maps with clear boundaries. Furthermore, different feature fusion methods of different stages are proposed to fully integrate multi-scale and multi-level features and improve the comprehensive representation ability of features, so as to achieve a more refined change detection effect while reducing pseudo-changes. To verify the effectiveness and advancement of the proposed method, it is compared with seven state-of-the-art methods on two datasets of Lebedev and SenseTime from the three aspects of quantitative analysis, qualitative analysis, and efficiency analysis, and the effectiveness of proposed modules is validated by an ablation study. The results of quantitative analysis and efficiency analysis show that, under the premise of taking into account the operation efficiency, our method can improve the recall while ensuring the detection precision, and realize the improvement of the overall detection performance. Specifically, it shows an average improvement of 37.9% and 12.35% on recall, and 34.76% and 11.88% on F1 with the Lebedev and SenseTime datasets, respectively, compared to other methods. The qualitative analysis shows that our method has better performance on small objects detection and boundary positioning than other methods, and a more refined change map can be obtained.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Ze Liu ◽  
Yingfeng Cai ◽  
Hai Wang ◽  
Long Chen

AbstractRadar and LiDAR are two environmental sensors commonly used in autonomous vehicles, Lidars are accurate in determining objects’ positions but significantly less accurate as Radars on measuring their velocities. However, Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution. In order to compensate for the low detection accuracy, incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR, in this paper, an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles. By employing the Unscented Kalman Filter, Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle. Finally, the real vehicle test under various driving environment scenarios is carried out. The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy. Compared with a single sensor, it has obvious advantages and can improve the intelligence level of autonomous cars.


2021 ◽  
Author(s):  
Shikha Dubey ◽  
Farrukh Olimov ◽  
Muhammad Aasim Rafique ◽  
Moongu Jeon

General artificial intelligence is a trade-off between the inductive bias of an algorithm and its out-of-distribution generalization performance. The conspicuous impact of inductive bias is an unceasing trend of improved predictions in various problems in computer vision like object detection. Although a recently introduced object detection technique, based on transformers (DETR), shows results competitive to the conventional and modern object detection models, its accuracy deteriorates for detecting small-sized objects (in perspective). This study examines the inductive bias of DETR and proposes a normalized inductive bias for object detection using a transformer (SOF-DETR). It uses a lazy-fusion of features to sustain deep contextual information of objects present in the image. The features from multiple subsequent deep layers are fused with element-wise-summation and input to a transformer network for object queries that learn the long and short-distance spatial association in the image by the attention mechanism.<br>SOF-DETR uses a global set-based prediction for object detection, which directly produces a set of bounding boxes. The experimental results on the MS COCO dataset show the effectiveness of the added normalized inductive bias and feature fusion techniques by detecting more small-sized objects than DETR. <br>


2021 ◽  
Vol 11 (23) ◽  
pp. 11241
Author(s):  
Ling Li ◽  
Fei Xue ◽  
Dong Liang ◽  
Xiaofei Chen

Concealed objects detection in terahertz imaging is an urgent need for public security and counter-terrorism. So far, there is no public terahertz imaging dataset for the evaluation of objects detection algorithms. This paper provides a public dataset for evaluating multi-object detection algorithms in active terahertz imaging. Due to high sample similarity and poor imaging quality, object detection on this dataset is much more difficult than on those commonly used public object detection datasets in the computer vision field. Since the traditional hard example mining approach is designed based on the two-stage detector and cannot be directly applied to the one-stage detector, this paper designs an image-based Hard Example Mining (HEM) scheme based on RetinaNet. Several state-of-the-art detectors, including YOLOv3, YOLOv4, FRCN-OHEM, and RetinaNet, are evaluated on this dataset. Experimental results show that the RetinaNet achieves the best mAP and HEM further enhances the performance of the model. The parameters affecting the detection metrics of individual images are summarized and analyzed in the experiments.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2903
Author(s):  
Razvan Bocu ◽  
Dorin Bocu ◽  
Maksim Iavich

The relatively complex task of detecting 3D objects is essential in the realm of autonomous driving. The related algorithmic processes generally produce an output that consists of a series of 3D bounding boxes that are placed around specific objects of interest. The related scientific literature usually suggests that the data that are generated by different sensors or data acquisition devices are combined in order to work around inherent limitations that are determined by the consideration of singular devices. Nevertheless, there are practical issues that cannot be addressed reliably and efficiently through this strategy, such as the limited field-of-view, and the low-point density of acquired data. This paper reports a contribution that analyzes the possibility of efficiently and effectively using 3D object detection in a cooperative fashion. The evaluation of the described approach is performed through the consideration of driving data that is collected through a partnership with several car manufacturers. Considering their real-world relevance, two driving contexts are analyzed: a roundabout, and a T-junction. The evaluation shows that cooperative perception is able to isolate more than 90% of the 3D entities, as compared to approximately 25% in the case when singular sensing devices are used. The experimental setup that generated the data that this paper describes, and the related 3D object detection system, are currently actively used by the respective car manufacturers’ research groups in order to fine tune and improve their autonomous cars’ driving modules.


Author(s):  
Yacouba Conde ◽  

In the machine learning technique, the knowledge graph is advancing swiftly; however, the basic models are not able to grasp all the affluence of the script that comes from the different personal web graphics, social media, ads, and diaries, etc., ignoring the semantic of the basic text identification. The knowledge graph provides a real way to extract structured knowledge from the texts and desire images of neural network, to expedite their semantics examination. In this study, we propose a new hybrid analytic approach for sentiment evaluation based on knowledge graphs, to identify the polarity of sentiment with positive and negative attitudes in short documents, particularly in 4 chirps. We used the tweets graphs, then the similarity of graph highlighted metrics and algorithm classification pertain sentimentality pre-dictions. This technique facilitates the explicability and clarifies the results in the knowledge graph. Also, we compare our differentiate the embeddings n-gram based on sentiment analysis and the result is indicated that our study can outperform classical n-gram models, with an F1-score of 89% and recall up to 90%.


2021 ◽  
Author(s):  
Shikha Dubey ◽  
Farrukh Olimov ◽  
Muhammad Aasim Rafique ◽  
Moongu Jeon

General artificial intelligence is a trade-off between the inductive bias of an algorithm and its out-of-distribution generalization performance. The conspicuous impact of inductive bias is an unceasing trend of improved predictions in various problems in computer vision like object detection. Although a recently introduced object detection technique, based on transformers (DETR), shows results competitive to the conventional and modern object detection models, its accuracy deteriorates for detecting small-sized objects (in perspective). This study examines the inductive bias of DETR and proposes a normalized inductive bias for object detection using a transformer (SOF-DETR). It uses a lazy-fusion of features to sustain deep contextual information of objects present in the image. The features from multiple subsequent deep layers are fused with element-wise-summation and input to a transformer network for object queries that learn the long and short-distance spatial association in the image by the attention mechanism.<br>SOF-DETR uses a global set-based prediction for object detection, which directly produces a set of bounding boxes. The experimental results on the MS COCO dataset show the effectiveness of the added normalized inductive bias and feature fusion techniques by detecting more small-sized objects than DETR. <br>


Sign in / Sign up

Export Citation Format

Share Document