Human Action Recognition in Unconstrained Videos Using Deep Learning Techniques

Author(s):  
G. G. Lakshmi Priya ◽  
Mrinal Jain ◽  
R. Srinivasa Perumal ◽  
P. V. S. S. R. Chandra Mouli

The human action recognition is the subject to predicting what an individual is performing based on a trace of their development exploiting a several strategies. Perceiving human activities is an ordinary region of eagerness in view of its various potential applications; though, it is still in start. It is a trending analysis area possessed by the range from dependable automation, medicinal services to developing the smart supervision system. In this work, we are trying to recognize the activity of the child from video dataset using deep learning techniques. The proposed system will help parent to take care of their baby during the job or from anywhere else to know what the baby is doing. This can also be useful to prevent the in-house accident falls of the child and for health monitoring. The activities can be performed by child include sleeping, walking, running, crawling, playing, eating, cruising, clapping, laughing, crying and many more. We are focusing on recognizing crawling, running, sleeping, and walking activities of the child in this study. The offered system gives the best result compared with the existing methods, which utilize sensor-based information. Experimental results proved that the offered deep learning model had accomplished 94.73% accuracy for recognizing the child activity.


2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

Author(s):  
Gopika Rajendran ◽  
Ojus Thomas Lee ◽  
Arya Gopi ◽  
Jais jose ◽  
Neha Gautham

With the evolution of computing technology in many application like human robot interaction, human computer interaction and health-care system, 3D human body models and their dynamic motions has gained popularity. Human performance accompanies human body shapes and their relative motions. Research on human activity recognition is structured around how the complex movement of a human body is identified and analyzed. Vision based action recognition from video is such kind of tasks where actions are inferred by observing the complete set of action sequence performed by human. Many techniques have been revised over the recent decades in order to develop a robust as well as effective framework for action recognition. In this survey, we summarize recent advances in human action recognition, namely the machine learning approach, deep learning approach and evaluation of these approaches.


Sign in / Sign up

Export Citation Format

Share Document