Shear Deformable Plate Elements

2020 ◽  
pp. 359-384
Author(s):  
Andreas Öchsner
2014 ◽  
Vol 969 ◽  
pp. 97-100 ◽  
Author(s):  
Eva Kormaníková

The paper deals with numerical modeling of delamination of laminate plate consists of unidirectional fiber reinforced layers. The methodology adopts the first-order shear laminate plate theory and fracture and contact mechanics. There are described sublaminate modeling and delamination modeling by the help of finite element analysis. With the interface modeling there is calculated the energy release rate along the lamination front. Numerical results are given for mixed mode delamination problems by implementing the method in a 2D finite analysis, which utilizes shear deformable plate elements and interface elements. Numerical example is done by the commercial ANSYS code.


Author(s):  
Oleg Dmitrochenko ◽  
Aki Mikkola

This study is an extension of a newly introduced approach to account transverse shear deformation in absolute nodal coordinate formulation. In the formulation, shear deformation is usually defined by employing slope vectors in the element transverse direction. This leads to the description of deformation modes that, in practical problems, may be associated with high frequencies. These high frequencies, in turn, could complicate the time integration procedure, burdening numerical performance of shear deformable elements. In a recent study of this paper’s authors, the description of transverse shear deformation is accounted for in a two-dimensional beam element, based on the absolute nodal coordinate formulation without the use of transverse slope vectors. In the introduced shear deformable beam element, slope vectors are replaced by vectors that describe the rotation of the beam cross-section. This procedure represents a simple enhancement that does not decrease the accuracy or numerical performance of elements based on the absolute nodal coordinate formulation. In this study, the approach to account for shear deformation without using transverse slopes is implemented for a thin rectangular plate element. In fact, two new plate elements are introduced: one within conventional finite element and another using the absolute nodal coordinates. Numerical results are presented in order to demonstrate the accuracy of the introduced plate element. The numerical results obtained using the introduced element agree with the results obtained using previously proposed shear deformable plate elements.


2018 ◽  
Vol 200 ◽  
pp. 21-31 ◽  
Author(s):  
Anssi T. Karttunen ◽  
Raimo von Hertzen ◽  
J.N. Reddy ◽  
Jani Romanoff

2020 ◽  
Vol 157 ◽  
pp. 107071
Author(s):  
Philip Schreiber ◽  
Christian Mittelstedt ◽  
Matthias Beerhorst

Sign in / Sign up

Export Citation Format

Share Document