Research on Hybrid Communication System for Nuclear Power Plants Safety-DCS

Author(s):  
Zhi-Qiang Chen ◽  
Qi Chen ◽  
Min-Jie Lei ◽  
Yan-Qun Wu
2021 ◽  
Author(s):  
Le Li ◽  
Zhihui Zhang ◽  
Chao Gao ◽  
Fei Zhou ◽  
Guangqiang Ma

Abstract With the development of digital instrument and control technology for nuclear power plants in recent decades, communication networks have become an important part of safety digital control systems, which takes charge in data exchange between the various sub-systems, and extremely impact on the reliability and safety of the entire I&C system. Traditional communication systems where some special features, such as reliability, safety, real-time, certainty, and independence are not strictly required are various illustrated. However, how to implement a communication system in a safety I&C system is rarely stated in current research. In this research, a reliable safety communication system applied in nuclear power plants is designed and analyzed. The five key characteristics of nuclear safety communication networks are explained, followed by explanation of how to achieve these characteristics. The analysis and verification of the designed system are also stated in this paper, which contributes to proving that the designed nuclear safety communication system could applied in the nuclear power plants.


Author(s):  
Yu Yun ◽  
Zheng Shen ◽  
Liu Jing

Abstract The communication system of nuclear power plants in China is not a safety class system, but it plays an important role in the safe operation of nuclear power plants. Under emergency state, the communication system is a prerequisite for accident management. In order to ensure communication on-site and off-site, diverse communication sub-systems are designed throughout the nuclear power plant, including various communication means for voice, data and images. For an advanced generation II pressurized water reactor (PWR) nuclear power plant (NPP) in China, there are various subsystems, including normal telephone system, safety telephone system, grid telephone system and so on. Although NPPs have designed diverse communication sub-systems, there is not any clear classification of the sub-systems, which is not enough for the reliability of communication sub-systems under accident conditions. Therefore, it can hardly ensure effective communications between different emergency response organizations and this will influence the mitigation of the accident. In order to identify the importance of different communication sub-systems, to optimize the design of communication system, and to improve the reliability and efficiency of nuclear power plant communication system, it’s necessary to analyze the function and operation of each sub-system, as well as to develop the classification method of nuclear power plant communication system. Considering the availability and reliability of onsite and offsite communication under emergency conditions, slightly considering economic issue, this paper determines 7 assessment factors and develops a set of scoring methods for communication system classification. On this basis, this paper completes the classification of the communication system for an advanced generation II PWR NPP, which provides a reference for communication system classification and provides the technical basis for design modification of the communication system.


Author(s):  
Marjorie B. Bauman ◽  
Richard F. Pain ◽  
Harold P. Van Cott ◽  
Margery K. Davidson

2010 ◽  
pp. 50-56 ◽  
Author(s):  
Pablo T. León ◽  
Loreto Cuesta ◽  
Eduardo Serra ◽  
Luis Yagüe

Author(s):  
R. Z. Aminov ◽  
A. N. Bayramov ◽  
M. V. Garievskii

The paper gives the analysis of the problem of the primary current frequency regulation in the power system, as well as the basic requirements for NPP power units under the conditions of involvement in the primary regulation. According to these requirements, the operation of NPPs is associated with unloading and a corresponding decrease in efficiency. In this regard, the combination of nuclear power plants with a hydrogen complex is shown to eliminate the inefficient discharge mode which allows the steam turbine equipment and equipment of the reactor facility to operate in the basic mode at the nominal power level. In addition, conditions are created for the generation and accumulation of hydrogen and oxygen during the day, as well as additionally during the nighttime failure of the electrical load which allows them to be used to generate peak power.  The purpose of the article is to assess the systemic economic effect as a result of the participation of nuclear power plants in combination with the hydrogen complex in the primary control of the current frequency in the power sys-tem, taking into account the resource costs of the main equipment. In this regard, the paper gives the justification of cyclic loading of the main equipment of the hydrogen complex: metal storage tanks of hydrogen and oxygen, compressor units, hydrogen-oxygen combustion chamber of vapor-hydrogen overheating of the working fluid in the steam turbine cycle of a nuclear power plant. The methodological foundations for evaluating the working life of equipment under cyclic loading with the participation in the primary frequency control by the criterion of the growth rate of a fatigue crack are described. For the equipment of the hydrogen complex, the highest intensity of loading is shown to occur in the hydrogen-oxygen combustion chamber due to high thermal stresses.  The system economic effect is estimated and the effect of wear of the main equipment under cyclic loading is shown. Under the conditions of combining NPP power units with a hydrogen complex, the efficiency of primary reg-ulation is shown to depend significantly on: the cost of equipment subjected to cyclic loading; frequency and intensity of cyclic loading; the ratio of the tariff for peak electricity, and the cost of electricity of nuclear power plants.  Based on the developed methodology for assessing the effectiveness of the participation of nuclear power plants with a hydrogen complex in the primary frequency control, taking into account the damage to the equipment, the use of the hydrogen complex is shown to provide a tangible economic effect compared with the option of unloading nuclear power plants with direct participation in frequency control.


Sign in / Sign up

Export Citation Format

Share Document