Bernstein Polynomial Collocation Method for Acceleration Motion of a Vertically Falling Non-spherical Particle

Author(s):  
Sudhir Singh ◽  
K. Murugesan
2015 ◽  
Vol 18 (1) ◽  
pp. 231-249 ◽  
Author(s):  
Zhendong Gu ◽  
Yanping Chen

Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in$h^{m}N^{-m}$-version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.


2003 ◽  
Vol 8 (4) ◽  
pp. 315-328 ◽  
Author(s):  
I. Parts ◽  
A. Pedas

A piecewise polynomial collocation method for solving linear weakly singular integro‐differential equations of Volterra type is constructed. The attainable order of convergence of collocation approximations on arbitrary and quasi‐uniform grids is studied theoretically and numerically.


CAUCHY ◽  
2015 ◽  
Vol 3 (4) ◽  
pp. 208
Author(s):  
M Ziaul Arif ◽  
Ahmad Kamsyakawuni ◽  
Ikhsanul Halikin

This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial) collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial) collocation method is applied to both Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.


Sign in / Sign up

Export Citation Format

Share Document