Lumbar Discography: Study of Biomechanical Changes in the L1-L2 Intervertebral Disc of the Human Lumbar Spine Using Finite Element Methods

Author(s):  
S. Balamurugan ◽  
P. Susai Manickam ◽  
Sachit Chawla
Author(s):  
A. Faizan ◽  
A. Kiapour ◽  
V. K. Goel ◽  
A. Ivanov ◽  
A. Biyani ◽  
...  

A finite element model of human lumbar spine (L3-S1 segment) was used to analyze biomechanical effects of the bi-level CHARITE artificial disc replacement (2LCHD) at L4-L5 and L5-S1 levels. The mechanical behavior and range of motion in implanted and intact models were compared using the finite element analyses and a hybrid loading protocol. In 2LCHD model the changes at L3-L4 level decreased by 25% also the model showed smooth changes in motion at implanted levels. In flexion there was an increase in facet loads at lower levels of 2LCHD however the bending moment in this model was less than intact model because of hybrid loading; in contrast, the facet loads in implanted model decreased in extension. It was observed that the bi-level disc replacement won’t affect much the kinematics of the spine and can be proposed as a good alternative for treatment in cases that disc degeneration occurs at more than one level of spine.


2021 ◽  
Vol 21 (1) ◽  
pp. 150-159
Author(s):  
Nicholas T. Spina ◽  
Genesis S. Moreno ◽  
Darrel S. Brodke ◽  
Sean M. Finley ◽  
Benjamin J. Ellis

1992 ◽  
Vol 5 (4) ◽  
pp. 50-59 ◽  
Author(s):  
W. Suwito ◽  
T. S. Keller ◽  
P. K. Basu ◽  
A. M. Weisberger ◽  
A. M. Strauss ◽  
...  

2002 ◽  
Vol 10 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Tobias Pitzen ◽  
Fred Geisler ◽  
Dieter Matthis ◽  
Hans Müller-Storz ◽  
Dragos Barbier ◽  
...  

Human spine is one of the complex structure of the human body. It provides the link between upper and lower extremities of the human body. It is estimated that at least 30% of people in the middle age group from thirty to fifty years have some degree of disc degeneration. Disc degeneration disease can affect the quality of life and in certain individual it can cause severe chronic pain if left untreated. The low back pain associated with lumbar disc degeneration is usually generated from two causes which are abnormal motion instability and inflammation. Abnormal motion instability occurs when the annulus fibrosus are worn down and cannot absorb stress on the human spine effectively resulting in changes in movements along the vertebral segment. To understand lumbar disc problem, a thorough knowledge of the biomechanics of the normal human lumbar spine and a disc degenerated lumbar spine is of great importance. In this study, Computed tomography image of a 33 year old male is used. A three dimensional (3D) human lumbar spine (L3 to L5) is created and validated with literature. The finite element model was modified to degenerated disc and studied the biomechanics of the lumbar spine. Comparison of the biomechanics of normal human lumbar spine is done with the human lumbar spine with disc degeneration for different range of motion and different loads. The result shows that the pressure generated on degenerated disc is greater than normal disc. This work can be implemented and used for designing implants and also for intervertebral disc related analysis


Sign in / Sign up

Export Citation Format

Share Document