scholarly journals Recent Developments in Multivariate Public Key Cryptosystems

Author(s):  
Yasufumi Hashimoto

Abstract The multivariate signature schemes UOV, Rainbow, and HFEv- have been considered to be secure and efficient enough under suitable parameter selections. In fact, several second round candidates of NIST’s standardization project of Post-Quantum Cryptography are based on these schemes. On the other hand, there are few multivariate encryption schemes expected to be practical and despite that, various new schemes have been proposed recently. In the present paper, we summarize multivariate schemes UOV, Rainbow, and (variants of) HFE generating the second round candidates and study the practicalities of several multivariate encryption schemes proposed recently.

Cryptography ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Le Luyen

Multivariate Public Key Cryptography (MPKC) is one of the main candidates for post-quantum cryptography, especially in the area of signature schemes. In this paper, we instantiate a certificate Identity-Based Signature (IBS) scheme based on Rainbow, one of the most efficient and secure multivariate signature schemes. In addition, we revise the previous identity-based signature scheme IBUOV based on the Unbalanced Oil and Vinegar (UOV) scheme on the security and choice of parameters and obtain that our scheme is more efficient than IBUOV in terms of key sizes and signature sizes.


2019 ◽  
Vol 62 (8) ◽  
pp. 1132-1147 ◽  
Author(s):  
Jiahui Chen ◽  
Jie Ling ◽  
Jianting Ning ◽  
Jintai Ding

Abstract In this paper, we proposed an idea to construct a general multivariate public key cryptographic (MPKC) scheme based on a user’s identity. In our construction, each user is distributed a unique identity by the key distribution center (KDC) and we use this key to generate user’s private keys. Thereafter, we use these private keys to produce the corresponding public key. This method can make key generating process easier so that the public key will reduce from dozens of Kilobyte to several bits. We then use our general scheme to construct practical identity-based signature schemes named ID-UOV and ID-Rainbow based on two well-known and promising MPKC signature schemes, respectively. Finally, we present the security analysis and give experiments for all of our proposed schemes and the baseline schemes. Comparison shows that our schemes are both efficient and practical.


2020 ◽  
Vol 16 (4) ◽  
pp. 155014772091477
Author(s):  
Jiahui Chen ◽  
Jie Ling ◽  
Jianting Ning ◽  
Emmanouil Panaousis ◽  
George Loukas ◽  
...  

Proxy signature is a very useful technique which allows the original signer to delegate the signing capability to a proxy signer to perform the signing operation. It finds wide applications especially in the distributed environment where the entities such as the wireless sensors are short of computational power and needed to be convinced to the authenticity of the server. Due to less proxy signature schemes in the post-quantum cryptography aspect, in this article, we investigate the proxy signature in the post-quantum setting so that it can resist against the potential attacks from the quantum adversaries. A general multivariate public key cryptographic proxy scheme based on a multivariate public key cryptographic signature scheme is proposed, and a heuristic security proof is given for our general construction. We show that the construction can reach Existential Unforgeability under an Adaptive Chosen Message Attack with Proxy Key Exposure assuming that the underlying signature is Existential Unforgeability under an Adaptive Chosen Message Attack. We then use our general scheme to construct practical proxy signature schemes for three well-known and promising multivariate public key cryptographic signature schemes. We implement our schemes and compare with several previous constructions to show our efficiency advantage, which further indicates the potential application prospect in the distributed network environment.


2019 ◽  
Vol 63 (8) ◽  
pp. 1194-1202 ◽  
Author(s):  
Dung Hoang Duong ◽  
Willy Susilo ◽  
Ha Thanh Nguyen Tran

Abstract Blind signatures are an important and useful tool in designing digital cash schemes and electronic voting protocols. Ring signatures on the other hand provide the anonymity of the signer within the ring of users. In order to fit to some real-life applications, it is useful to combine both protocols to create a blind ring signature scheme, which utilizes all of their features. In this paper, we propose, for the first time, a post-quantum blind ring signature scheme. Our scheme is constructed based on multivariate public key cryptography, which is one of the main candidates for post-quantum cryptography.


Author(s):  
Keith M. Martin

In this chapter, we introduce public-key encryption. We first consider the motivation behind the concept of public-key cryptography and introduce the hard problems on which popular public-key encryption schemes are based. We then discuss two of the best-known public-key cryptosystems, RSA and ElGamal. For each of these public-key cryptosystems, we discuss how to set up key pairs and perform basic encryption and decryption. We also identify the basis for security for each of these cryptosystems. We then compare RSA, ElGamal, and elliptic-curve variants of ElGamal from the perspectives of performance and security. Finally, we look at how public-key encryption is used in practice, focusing on the popular use of hybrid encryption.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Youngjoo An ◽  
Hyang-Sook Lee ◽  
Juhee Lee ◽  
Seongan Lim

The notion of key substitution security on digital signatures in the multiuser setting has been proposed by Menezes and Smart in 2004. Along with the unforgeability of signature, the key substitution security is very important since it is a critical requirement for the nonrepudiation and the authentication of the signature. Lattice-based signature is a promising candidate for post-quantum cryptography, and the unforgeability of each scheme has been relatively well studied. In this paper, we present key substitution attacks on BLISS, Lyubashevsky’s signature scheme, and GPV and thus show that these signature schemes do not provide nonrepudiation. We also suggest how to avoid key substitution attack on these schemes.


Sign in / Sign up

Export Citation Format

Share Document