Optimal Power Flow Solutions for Power System Operations Using Moth-Flame Optimization Algorithm

Author(s):  
Salman Alabd ◽  
Mohd Herwan Sulaiman ◽  
Muhammad Ikram Mohd Rashid
2018 ◽  
Vol 54 (3A) ◽  
pp. 52
Author(s):  
Duong Thanh Long

Optimal Power Flow (OPF) problem is an optimization tool through which secure and economic operating conditions of power system is obtained. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Series FACTS devices such as Thyristor controlled series compensators (TCSC), with its ability to directly control the power flow can be very effective to power system security. Thus, integration TCSC in the OPF is one of important current problems and is a suitable method for better utilization of the existing system. This paper is applied Cuckoo Optimization Algorithm (COA) for the solution of the OPF problem of power system equipped with TCSC. The proposed approach has been examined and tested on the IEEE 30-bus system. The results presented in this paper demonstrate the potential of COA algorithm and show its effectiveness for solving the OPF problem with TCSC devices over the other evolutionary optimization techniques.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2270 ◽  
Author(s):  
Sirote Khunkitti ◽  
Apirat Siritaratiwat ◽  
Suttichai Premrudeepreechacharn ◽  
Rongrit Chatthaworn ◽  
Neville Watson

In this paper, a hybrid optimization algorithm is proposed to solve multiobjective optimal power flow problems (MO-OPF) in a power system. The hybrid algorithm, named DA-PSO, combines the frameworks of the dragonfly algorithm (DA) and particle swarm optimization (PSO) to find the optimized solutions for the power system. The hybrid algorithm adopts the exploration and exploitation phases of the DA and PSO algorithms, respectively, and was implemented to solve the MO-OPF problem. The objective functions of the OPF were minimization of fuel cost, emissions, and transmission losses. The standard IEEE 30-bus and 57-bus systems were employed to investigate the performance of the proposed algorithm. The simulation results were compared with those in the literature to show the superiority of the proposed algorithm over several other algorithms; however, the time computation of DA-PSO is slower than DA and PSO due to the sequential computation of DA and PSO.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2975
Author(s):  
Mohammad H. Nadimi-Shahraki ◽  
Shokooh Taghian ◽  
Seyedali Mirjalili ◽  
Laith Abualigah ◽  
Mohamed Abd Abd Elaziz ◽  
...  

The optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2815
Author(s):  
Zongjie Wang ◽  
C. Lindsay Anderson

Renewable energy sources including wind farms and solar sites, have been rapidly integrated within power systems for economic and environmental reasons. Unfortunately, many renewable energy sources suffer from variability and uncertainty, which may jeopardize security and stability of the power system. To face this challenge, it is necessary to develop new methods to manage increasing supply-side uncertainty within operational strategies. In modern power system operations, the optimal power flow (OPF) is essential to all stages of the system operational horizon; underlying both day-ahead scheduling and real-time dispatch decisions. The dispatch levels determined are then implemented for the duration of the dispatch interval, with the expectation that frequency response and balancing reserves are sufficient to manage intra-interval deviations. To achieve more accurate generation schedules and better reliability with increasing renewable resources, the OPF must be solved faster and with better accuracy within continuous time intervals, in both day-ahead scheduling and real-time dispatch. To this end, we formulate a multi-period dispatch framework, that is, progressive period optimal power flow (PPOPF), which builds on an interval optimal power flow (IOPF), which leverages median and endpoints on the interval to develop coherent coordinations between day-ahead and real-time period optimal power flow (POPF). Simulation case studies on a practical PEGASE 13,659-bus transmission system in Europe have demonstrated implementation of the proposed PPOPF within multi-stage power system operations, resulting in zero dispatch error and violation compared with traditional OPF.


Sign in / Sign up

Export Citation Format

Share Document