Design Exploration Using Unique Multidisciplinary Design Optimization Framework

Author(s):  
Garima Singh ◽  
N. C. Praveen
2020 ◽  
Vol 57 (4) ◽  
pp. 715-729 ◽  
Author(s):  
Alessandro Sgueglia ◽  
Peter Schmollgruber ◽  
Nathalie Bartoli ◽  
Emmanuel Benard ◽  
Joseph Morlier ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 17-44 ◽  
Author(s):  
Darcy L. Allison ◽  
Craig C. Morris ◽  
Joseph A. Schetz ◽  
Rakesh K. Kapania ◽  
Layne T. Watson ◽  
...  

Author(s):  
Mehdi Tarkian ◽  
Johan Persson ◽  
Johan O¨lvander ◽  
Xiaolong Feng

This paper presents a multidisciplinary design optimization framework for modular industrial robots. An automated design framework, containing physics based high fidelity models for dynamic simulation and structural strength analyses are utilized and seamlessly integrated with a geometry model. The proposed framework utilizes well-established methods such as metamodeling and multi-level optimization in order to speed up the design optimization process. The contribution of the paper is to show that by applying a merger of well-established methods, the computational cost can be cut significantly, enabling search for truly novel concepts.


2000 ◽  
Vol 122 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Marc A. Stelmack ◽  
Stephen M. Batill ◽  
Bryan C. Beck

A multidisciplinary design optimization (MDO) framework has been used to design an aircraft brake assembly. This was done using a user-interactive implementation of the framework in which design information was obtained from analysis software used in industry but not developed for an MDO application. The design included a number of performance requirements associated with a brake that has been produced for a commercial aircraft. Design improvement was achieved using a practical number of system realizations and the interaction between the optimization algorithm and the design engineers was maintained throughout the process. [S1050-0472(00)00201-4]


2017 ◽  
Vol 2017 (4) ◽  
pp. 9-23
Author(s):  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino

Abstract The aircraft design is a complex subject since several and completely different design disciplines are involved in the project. Many efforts are made to harmonize and optimize the design trying to combine all disciplines together at the same level of detail. Within the ongoing AGILE (Horizon 2020) research, an aircraft MDO (Multidisciplinary Design Optimization) process is setting up connecting several design tools and competences together. Each tool covers a different design discipline such as aerodynamics, structure, propulsion and systems. This paper focuses on the integration of the sub-system design discipline with the others in order to obtain a complete and optimized aircraft preliminary design. All design parameters used to integrate the sub-system branch with the others are discussed as for their redefinition within the different detail level of the design.


Sign in / Sign up

Export Citation Format

Share Document