air vehicle
Recently Published Documents


TOTAL DOCUMENTS

1532
(FIVE YEARS 233)

H-INDEX

42
(FIVE YEARS 7)

Author(s):  
Vibhakar Seewoogolam ◽  
Brijesh Prasad ◽  
Avi Raj Manral ◽  
Ibrahim M. Alarifi ◽  
Ramazan Asmatulu

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Syam Narayanan S. ◽  
Asad Ahmed R.

Purpose The purpose of this study is to experimentally analyse the effect of flexible and stiffened membrane wings in the lift generation of flapping micro air vehicle (MAV). Design/methodology/approach This is analysed by the rectangle wing made up of polyethylene terephthalate sheets of 100 microns. MAV is tested for the free stream velocity of 2 m/s, 4 m/s, 6 m/s and k* of 0, 0.25, 1, 3, 8. This test is repeated for flapping MAV of the free flapping frequency of 2 Hz, 4 Hz, 6 Hz, 10 Hz and 12 Hz. Findings This study shows that the membrane wing with proper stiffeners can give better lift generation capacity than a flexible wing. Research limitations/implications Only a normal force component is measured, which is perpendicular to the longitudinal axis of the model. Practical implications In MAVs, the wing structures are thin and light, so the effect of fluid-structure interactions is important at low Reynold’s numbers. This data are useful for the MAV developments. Originality/value The effect of chord-wise flexibility in lift generation is the study of the effect of a flexible wing and rigid wing in MAV. It is analysed by the rectangle wing. The coefficient of normal force at different free stream conditions was analysed.


2022 ◽  
Author(s):  
Rúben Ferreira ◽  
Emanuel A. Camacho ◽  
Fernando P. Neves ◽  
Jorge M. Barata ◽  
Andre R. Silva

2022 ◽  
Author(s):  
Markus P. Rumpfkeil ◽  
Philip S. Beran
Keyword(s):  

2022 ◽  
Author(s):  
Arooj Fatima ◽  
Adnan Maqsood ◽  
Tiauw Hiong Go ◽  
Shuaib Salamat ◽  
Rizwan Riaz

2022 ◽  
Author(s):  
Ethan J. Billingsley ◽  
Mehdi Ghommem ◽  
Rui Vasconcellos ◽  
Abdessatar Abdelkefi

Author(s):  
Xuan Yang ◽  
Aswathi Sudhir ◽  
Atanu Halder ◽  
Moble Benedict

Aeromechanics of highly flexible flapping wings is a complex nonlinear fluid–structure interaction problem and, therefore, cannot be analyzed using conventional linear aeroelasticity methods. This paper presents a standalone coupled aeroelastic framework for highly flexible flapping wings in hover for micro air vehicle (MAV) applications. The MAV-scale flapping wing structure is modeled using fully nonlinear beam and shell finite elements. A potential-flow-based unsteady aerodynamic model is then coupled with the structural model to generate the coupled aeroelastic framework. Both the structural and aerodynamic models are validated independently before coupling. Instantaneous lift force and wing deflection predictions from the coupled aeroelastic simulations are compared with the force and deflection measurements (using digital image correlation) obtained from in-house flapping wing experiments at both moderate (13 Hz) and high (20 Hz) flapping frequencies. Coupled trim analysis is then performed by simultaneously solving wing response equations and vehicle trim equations until trim controls, wing elastic response, inflow and circulation converge all together. The dependence of control inputs on weight and center of gravity (cg) location of the vehicle is studied for the hovering flight case.


Sign in / Sign up

Export Citation Format

Share Document