Effect of Pulse-Type Ground Motions on the Rocking Response of Rigid Blocks on Deformable Media

Author(s):  
V. H. Sheikh ◽  
S. Mukhopadhyay
Author(s):  
Ling-Kun Chen ◽  
Peng Liu ◽  
Li-Ming Zhu ◽  
Jing-Bo Ding ◽  
Yu-Lin Feng ◽  
...  

Near-fault (NF) earthquakes cause severe bridge damage, particularly urban bridges subjected to light rail transit (LRT), which could affect the safety of the light rail transit vehicle (“light rail vehicle” or “LRV” for short). Now when a variety of studies on the fault fracture effect on the working protection of LRVs are available for the study of cars subjected to far-reaching soil motion (FFGMs), further examination is appropriate. For the first time, this paper introduced the LRV derailment mechanism caused by pulse-type near-fault ground motions (NFGMs), suggesting the concept of pulse derailment. The effects of near-fault ground motions (NFGMs) are included in an available numerical process developed for the LRV analysis of the VBI system. A simplified iterative algorithm is proposed to assess the stability and nonlinear seismic response of an LRV-reinforced concrete (RC) viaduct (LRVBRCV) system to a long-period NFGMs using the dynamic substructure method (DSM). Furthermore, a computer simulation software was developed to compute the nonlinear seismic responses of the VBI system to pulse-type NFGMs, non-pulse-type NFGMs, and FFGMs named Dynamic Interaction Analysis for Light-Rail-Vehicle Bridge System (DIALRVBS). The nonlinear bridge seismic reaction determines the impact of pulses on lateral peak earth acceleration (Ap) and lateral peak land (Vp) ratios. The analysis results quantify the effects of pulse-type NFGMs seismic responses on the LRV operations' safety. In contrast with the pulse-type non-pulse NFGMs and FFGMs, this article's research shows that pulse-type NFGM derail trains primarily via the transverse velocity pulse effect. Hence, this study's results and the proposed method can improve the LRT bridges' seismic designs.


2016 ◽  
Vol 10 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Giovanni Minafò ◽  
Giuseppina Amato ◽  
Lorenzo Stella

Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the approach proposed by Spanoset al.(2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made about the overturning conditions and on the effect of forcing function’s frequency.


Author(s):  
Iswandi Imran ◽  
Budi Santoso ◽  
Ary Pramudito ◽  
Muhammad Kadri Zamad

<p>The earthquake near Palu, Sulawesi (Indonesia) on September 28, 2018 with a magnitude of M7.4 was caused by a shallow strike-slip of Palu-Koro fault. The earthquake and the subsequent tsunami have caused the collapse of the Ponulele Bridge (Palu IV Bridge). The steel box bowstring arch bridge was located near-fault regions (within 1,5 km from fault line) that have not been identified during the design process. This bridge may have been damaged by the presence of fling-step pulses in the near-fault pulse-type ground motions that increases the damaging potential of such ground motions. This paper presents the failure simulation of the bridge subjected to the near fault pulse type time history with spatial variation ground motions applied on multiple bridge supports. From the simulation, it is concluded that the near fault effects and the spatial variation of the ground motion have increased significantly the seismic demand on the bridge. This increase causes the failure in the anchorage of the bridge bearing system.</p>


2020 ◽  
Vol 129 ◽  
pp. 105713 ◽  
Author(s):  
F.D. Konstandakopoulou ◽  
K.I. Evangelinos ◽  
I.E. Nikolaou ◽  
G.A. Papagiannopoulos ◽  
N.G. Pnevmatikos

Géotechnique ◽  
2000 ◽  
Vol 50 (3) ◽  
pp. 243-262 ◽  
Author(s):  
N. Makris ◽  
Y. S. Roussos

2012 ◽  
Vol 594-597 ◽  
pp. 1688-1691
Author(s):  
Ming Li ◽  
Qiao Jin ◽  
Yong Liu ◽  
He Yuan ◽  
Zhe Zhe Sun

during the process of fitting or synthesizing near-fault ground motion,parameters of the equivalent velocity pulse need to be decided based on seismic records.Thus, it is a key problem that how to identify these parameters from the records.Pulse period and pulse peak velocity are important parameters in the equivalent velocity pulse models.In this study,various methods on identifying these parameters are reviewed.It is shown that all the existing methods have limitations,especially for the irregular seismic records.Finally,problems need to be further studied is pointed out.


Sign in / Sign up

Export Citation Format

Share Document