CFST Arch Bridge Seismic Response by Action of Pulse-type Ground Motions

Author(s):  
F Xing ◽  
X F Li ◽  
X Li
2011 ◽  
Vol 255-260 ◽  
pp. 962-966
Author(s):  
Fan Xing ◽  
Lin Zhao ◽  
Ya Zhe Xing

In view of huge destructibility of the near-fault ground motions, structures with long natural vibration period are liable to fall into nonlinear reaction stage. Based on a full understanding of the near-fault seismic spectrum characteristics, the out-of-plane seismic response of a long span concrete-filled steel tube (CFST) arch bridge was studied in depth, and the research result could offer a reference for near-fault aseismic design.


2021 ◽  
Vol 11 (7) ◽  
pp. 3217
Author(s):  
Qiuhong Zhao ◽  
Shuo Dong ◽  
Qingwei Wang

Studies on the seismic response of skewed integral abutment bridges have mainly focused on response under far-field non-pulse-type ground motions, yet the large amplitude and long-period velocity pulses in near-fault ground motions might have significant impacts on bridge seismic response. In this study, the nonlinear dynamic response of an skewed integral abutment bridge (SIAB) under near-fault pulse and far-fault non-pulse type ground motions are analyzed considering the soil–structure interaction, along with parametric studies on bridge skew angle and compactness of abutment backfill. For the analyses, three sets of near-fault pulse ground motion records are selected based on the bridge site conditions, and three corresponding far-field non-pulse artificial records are fitted by their acceleration response spectra. The results show that the near-fault pulse type ground motions are generally more destructive than the non-pulse motions on the nonlinear dynamic response of SIABs, but the presence of abutment backfill will mitigate the pulse effects to some extent. Coupling of the longitudinal and transverse displacements as well as rotation of the bridge deck would increase with the skew angle, and so do the internal forces of steel H piles. The influence of the skew angle would be most obvious when the abutment backfill is densely compacted.


2018 ◽  
Vol 112 ◽  
pp. 58-68 ◽  
Author(s):  
Eren Uckan ◽  
Önder Umut ◽  
Fatma Nurten Sisman ◽  
Shaghayegh Karimzadeh ◽  
Aysegul Askan

2013 ◽  
Vol 671-674 ◽  
pp. 1367-1371
Author(s):  
Fan Xing ◽  
Rui Kang

Near-fault ground motions are more complex than the common far field, and it can significantly change the response characteristics of the structure. The records of Taiwan chi-chi earthquake associating with velocity pulse are selected, and the seismic accelerate response spectrum of different site are studied in deep. On the basis of time-history analysis, the seismic responses of a long-span CFST (concrete-filled steel tubular) arch bridge are discussed. Weakness section of the CFST arch rib are also indicated, providing a valuable reference for aseismic design.


2013 ◽  
Vol 540 ◽  
pp. 21-28 ◽  
Author(s):  
Jun Ma ◽  
Yan Li

For long span arch bridges, the traveling wave effect is an important aspect on seismic response of structure which cannot ignore. The Big Mass Method was used to analyze the seismic response of a half-through CFST arch bridge under both uniform and non-uniform excitations. The results showed that the traveling wave effect caused by non-uniform excitation led to more obvious seismic response in both internal forces and displacements. The skewback section was most dangerous. The waveform of internal forces caused by non-uniform excitation was quite similar to that caused by uniform excitation, but the amplitude of the latter is bigger than the former. It can conclude that the traveling wave effect would cause the unsynchronized vibration to the structure elements which led to the lager responses.


2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


Sign in / Sign up

Export Citation Format

Share Document