Evaluation of Response Reduction Factor for RCC Moment Resisting Frame with Ductile Shear Wall

Author(s):  
Akash Soni ◽  
Manohari P. Kulkarni ◽  
Shardul G. Joshi
2014 ◽  
Vol 638-640 ◽  
pp. 1932-1936 ◽  
Author(s):  
Jian Hua Shao ◽  
Qun Wu

The seismic behavior factor of moment resisting steel frame-steel plate shear wall under two different horizontal loading patterns was investigated according to the maximum inter-story drift ratio reaching 1/50. It could be achieved with the same calculated standard as the foreign codes and the determined behavior factor was compared with foreign research results. The method using the software SAP2000 to calculate seismic behavior factor according to the maximum inter-story drift ratio reaching 1/50 was presented and the specific example was used to elaborate the operating process. The seismic behavior factor R, the overstrength factor RΩ and the ductility reduction factor Rμ of 10-storey 3-span steel frame-steel plate shear wall under the inverted triangle load are respectively 6.07, 2.96 and 2.05. while they are respectively 7.2, 3.37 and 2.13 under the uniform load. Finally, it can be concluded that the economic and reasonable design goals are achieved for this structure.


2019 ◽  
Vol 15 (8) ◽  
pp. 155014771985756 ◽  
Author(s):  
Mehdi Firoozbakht ◽  
Hamidreza Vosoughifar ◽  
Alireza Ghari Ghoran

The coverage intensity of sensors is the most important issue on structural health monitoring technique. The geometric configuration of sensors must be optimized based on coverage intensity with proper objectives. In this article, a novel algorithm for optimal sensor placement in various steel frames was evaluated. These frames including moment-resisting frame, moment-resisting frame with base isolation, and moment-resisting frame with base isolation with steel shear wall were selected for case studies. This approach was proposed based on combination of common optimal sensor placement algorithm and nonlinear time history analysis. A new method called transformed time history to frequency domain approach was evaluated to transform nonlinear time history analysis results to frequency domain and then the effective frequencies according the maximum range of Fourier amplitude were selected. The modified type of modal assurance criterion values can be achieved from modal assurance criterion with the exact seismic displacement. All of novel optimal sensor placement processes were done through FEM-MAC-TTFD code modeled and developed in MATLAB by authors of this article. The results show that there is good relative correlation between the sensors number and coverage intensity obtained with modal and modified modal assurance criterion approaches for moment-resisting frame system, but for integrated frame such as moment-resisting frame with base isolation and moment-resisting frame with base isolation with steel shear wall, the modified modal assurance criterion approach is better approach. There is no significant difference between coverage intensity of sensors for top joints between modal assurance criterion and modified modal assurance criterion approaches for moment-resisting frame, moment-resisting frame with base isolation, and moment-resisting frame with base isolation with steel shear wall systems ( R2 = 0.994, 0.986, and 0.724, respectively). It was found that if reference point is located in center of frame, there is significant difference between modal assurance criterion and modified modal assurance criterion approaches, and modified modal assurance criterion generated slightly better results.


Teras Jurnal ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 263
Author(s):  
Mul Muliadi Adi ◽  
M. Kabir Kabir Ihsan

Bangunan yang hancur oleh gempa dapat dicegah dengan memperkuat struktur bangunan terhadap gaya gempa yang bekerja padanya. Perkuatan bangunan dapat dilakukan dengan memperkaku bangunan dalam arah lateral yaitu <em>moment resisting frame</em> (<em>rigid frame</em>), <em>braced frame</em> dan <em>shear wall</em>. Bangunan dinding geser merupakan salah satu jenis <em>bangunan</em> tahan gempa gedung beton bertulang menggunakan sistem rangka struktur yang dikombinasikan. Kinerja gedung akan bertambah dan menjadi optimal jika pola penempatan <em>dinding geser</em> serta metode analisanya tepat. Sistem lainnya dalam mengurangi kerusakan bangunan akibat gempa dengan <em>performance based seismic design</em> yaitu dengan menggunakan <em>base isolator.</em>, yang memanfaatkan teknik analisa non-linear berbasis komputer untuk menganalisa perilaku inelastis struktur dari berbagai macam intensitas gerakan tanah (<em>gempa</em>), sehingga dapat diketahui kinerjanya pada kondisi kritis. Tujuan penelitian ini dilakukan untuk mengetahui perioda dalam penggunaan <em>base isolator </em>dengan yang tanpa menggunakan <em>base isolator,</em> pada bangunan sistem ganda, lantai 10 tingkat, bentuk beraturan pada bangunan dinding geser. Analisis data yang dilakukan dengan menggunakan bantuan <em>software </em>komputer <em>SAP2000</em>. Pembebanan pada gedung didasarkan pada peraturan bangunan gedung beton bertulang dan analisa dinamik <em>Time History Modal Analysi</em>s struktur dalam Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung Dan Non Gedung (SNI 1726:2012). Dari hasil penelitian ini dapat diketahui bahwa penggunaan <em>base isolator</em> memperbesar perioda alami. Nilai perioda pada dinding geser dan dinding geser <em>base isolator</em> besarnya berturut-turut 0.988 detik dan 2.465 detik. Hal ini menyebabkan gaya gempa yang bekerja menjadi lebih kecil.


2017 ◽  
Vol 171 ◽  
pp. 1069-1076 ◽  
Author(s):  
Linda Astriana ◽  
Senot Sangadji ◽  
Edy Purwanto ◽  
S.A. Kristiawan

1982 ◽  
Vol 9 (2) ◽  
pp. 308-312 ◽  
Author(s):  
W. K. Tso

A comparison is made, based on static and dynamic base shear calculations according to the National Building Code of Canada of 1980, for four types of simple structures, namely, uniform moment resisting frame structures, uniform ductile flexural wall structures, uniform reinforced concrete shear wall structures, and unreinforced masonry wall structures. It is shown that a significant discrepancy exists between the static and dynamic base shear values, depending on the type and the fundamental period of the structure. The causes for the discrepancy and the necessity to make static and dynamic base shears compatible are discussed.


PCI Journal ◽  
1992 ◽  
Vol 37 (5) ◽  
pp. 80-92 ◽  
Author(s):  
Regina Gaiotti ◽  
Bryan Stafford Smith

Sign in / Sign up

Export Citation Format

Share Document