base isolation
Recently Published Documents


TOTAL DOCUMENTS

1089
(FIVE YEARS 240)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Vol 154 ◽  
pp. 107127
Author(s):  
Amir Ali ◽  
Chunwei Zhang ◽  
Tayyaba Bibi ◽  
Limeng Zhu ◽  
Liyuan Cao ◽  
...  

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Kourosh Talebi Jouneghani

The purpose of base isolation is to absorb earthquake energy, prolong the life of the structure, and enable the structure to be similar to a rigid body. However, since resonance can occur due to the closeness of the period of structures to the long period and large velocity pulses of the near field earthquakes, the stability of these buildings greatly reduces, and with the large displacement above isolation level, sometimes, tendency of overturning is created in isolators leading to their destruction. The main objective of this study is to significantly reduce the lateral displacement of base isolation subjected to near field earthquakes. In this research, seismic response calculation has been carried out for five steel moment frame structure with the 3, 5, 8, 11, and 14 stories in two states of with and without stiff core structure and energy dissipaters. The analyses has been done under fourteen scaled records of seven near-source and seven far-source earthquakes. It has been shown that the lateral displacement of base isolation system can be reduced by 87% for low-rise buildings, and 77% for high-rise buildings.


2021 ◽  
Vol 12 (1) ◽  
pp. 232
Author(s):  
Ying-Xiong Wu ◽  
Xin-Jun Dong ◽  
You-Qin Lin ◽  
Hao-De Cheng

There are a few isolated structures that have been subjected to seismic testing. An isolated structure is incapable of tracking, adjusting, and controlling its dynamic characteristics. As a result, field evaluations of solitary structures’ dynamic characteristics are important. The horizontal initial displacement of a base isolation kindergarten made of 46 isolation bearings is 75 mm. The method for creating the horizontal initial displacement condition is illustrated, as are the primary test findings. Horizontal initial displacement is accomplished with the assistance of a reaction wall, rods, and hydraulic pump system. To begin, we removed the building using hydraulic jacks to produce horizontal displacement of the isolation layer and then attached rods to support the building. The rods were then shot and unloaded, causing the building to shake freely, and its dynamic response and other parameters were tested. The results indicate that the natural vibration period of an isolated structure is much greater than the natural vibration period of a seismic structure. The isolation layer’s hysteretic curve as completely filled; upon unloading, the isolation layer as promptly reset; the dynamic response control effect of each was visible, but the top floor’s acceleration was magnified by approximately 1.27 times.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8400
Author(s):  
Sung-Wan Kim ◽  
Da-Woon Yun ◽  
Bub-Gyu Jeon ◽  
Dae-Gi Hahm ◽  
Min-Kyu Kim

The installation of base isolation systems in nuclear power plants can improve their safety from seismic loads. However, nuclear power plants with base isolation systems experience greater displacement as they handle seismic loads. The increase in relative displacement is caused by the installed base isolation systems, which increase the seismic risk of the interface piping system. It was found that the failure mode of the interface piping system was low-cycle fatigue failure accompanied by ratcheting, and the fittings (elbows and tees) failed due to the concentration of nonlinear behavior. Therefore, in this study, the limit state was defined as leakage, and an in-plane cyclic loading test was conducted in order to quantitatively express the failure criteria for the SCH40 6-inch carbon steel pipe elbow due to low-cycle fatigue failure. The leakage line and low-cycle fatigue curves of the SCH40 6-inch carbon steel pipe elbow were presented based on the test results. In addition, the limit state was quantitatively expressed using the damage index, based on the combination of ductility and energy dissipation. The average values of the damage index for the 6-inch pipe elbow calculated using the force−displacement (P–D) and moment−relative deformation angle (M–R) relationships were found to be 10.91 and 11.27, respectively.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 1684-1709
Author(s):  
Sayed Behzad Talaeitaba ◽  
Mohamad Safaie ◽  
Reza Zamani

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2151-2163
Author(s):  
Saumitra Jain ◽  
Sumiran Pujari ◽  
Arghadeep Laskar

Author(s):  
Shida Jin ◽  
Shuaishuai Sun ◽  
Jian Yang ◽  
Lei Deng ◽  
Haiping Du ◽  
...  

Abstract Magnetorheological elastomer (MRE), as a field-dependent smart material, has been widely applied on base isolation for vibration reduction. However, the MRE isolation system often experiences large drift during strong earthquake, which may cause mechanical failure. Additionally, its performance among low frequency range is still limited. To tackle these problems, this paper proposes a hybrid vibration isolation system which is composed of four stiffness softening MRE isolators and a passive ball-screw inerter. A simulation was developed to prove the effectiveness of the hybrid isolation system before the earthquake tests. A scaled three-storey building was developed based on the scaling laws as the isolated objective in earthquake experiments. Besides, a linear quadratic regulation (LQR) controller was utilised to control the mechanical properties of the hybrid MRE isolation system. Finally, the evaluation experiments of the building under a scaled Kobe earthquake excitation were conducted. The experimental results show that the simulation and the experimental results were in agreement, validating that the hybrid isolation system could provide a better vibration mitigation performance, in the meanwhile, reduce the displacement amplitude of the isolation system.


Sign in / Sign up

Export Citation Format

Share Document