User Preference Multi-criteria Recommendations Using Neural Collaborative Filtering Methods

Author(s):  
Kaira Nithin Goud ◽  
Y. V. Ramanjaneyulu ◽  
Korra Sathya Babu ◽  
Bidyut Kr. Patra
2021 ◽  
Vol 11 (12) ◽  
pp. 5416
Author(s):  
Yanheng Liu ◽  
Minghao Yin ◽  
Xu Zhou

The purpose of POI group recommendation is to generate a recommendation list of locations for a group of users. Most of the current studies first conduct personal recommendation and then use recommendation strategies to integrate individual recommendation results. Few studies consider the divergence of groups. To improve the precision of recommendations, we propose a POI group recommendation method based on collaborative filtering with intragroup divergence in this paper. Firstly, user preference vector is constructed based on the preference of the user on time and category. Furthermore, a computation method similar to TF-IDF is presented to compute the degree of preference of the user to the category. Secondly, we establish a group feature preference model, and the similarity of the group and other users’ feature preference is obtained based on the check-ins. Thirdly, the intragroup divergence of POIs is measured according to the POI preference of group members and their friends. Finally, the preference rating of the group for each location is calculated based on a collaborative filtering method and intragroup divergence computation, and the top-ranked score of locations are the recommendation results for the group. Experiments have been conducted on two LBSN datasets, and the experimental results on precision and recall show that the performance of the proposed method is superior to other methods.


2020 ◽  
Vol 1453 ◽  
pp. 012140 ◽  
Author(s):  
Yuxi Chen ◽  
Xiaotong Zhang ◽  
Qing Zhao ◽  
Faheem Akhtar

2020 ◽  
Vol 34 (04) ◽  
pp. 6267-6274
Author(s):  
Xiao Wang ◽  
Ruijia Wang ◽  
Chuan Shi ◽  
Guojie Song ◽  
Qingyong Li

The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Nevertheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.


Author(s):  
Heyong Wang ◽  
◽  
Ming Hong ◽  
Jinjiong Lan

The traditional collaborative filtering model suffers from high-dimensional sparse user rating information and ignores user preference information contained in user reviews. To address the problem, this paper proposes a new collaborative filtering model UL_SAM (UBCF_LDA_SIMILAR_ADD_MEAN) which integrates topic model with user-based collaborative filtering model. UL_SAM extracts user preference information from user reviews through topic model and then fuses user preference information with user rating information by similarity fusion method to create fusion information. UL_SAM creates collaborative filtering recommendations according to fusion information. It is the advantage of UL_SAM on improving recommendation effectiveness that UL_SAM enriches information for collaborative recommendation by integrating user preference with user rating information. Experimental results of two public datasets demonstrate significant improvement on recommendation effectiveness in our model.


2021 ◽  
Vol 5 (1) ◽  
pp. 457-466
Author(s):  
Umar Kabiru ◽  
Abubakar Muhammad

User-based and item-based collaborative filtering techniques are among most explored strategies of making products’ recommendations to Users on online shopping platforms. However, a notable weakness of the collaborative filtering techniques is the cold start problem. Which include cold user problem, cold item problem and cold system problem – i.e., the failure of collaborative filtering to make recommendation of products to a new user, failure of an item to be recommended, or combination of the two respectively.  Literature investigation has shown that cold user problem could be effectively addressed using technique of personalized questionnaire. Unfortunately, where the products’ database is too large (as in Amazon.com), results obtained from personalized questionnaire technique could contain some user preference uncertainties. This paper presents technique of improving personalized questionnaire with uncertainty reduction technique. In addition, the paper presents classification of product recommendation systems. In this work we will be limited to user-based cold start.  Experimentation was conducted using Movielens dataset, where the proposed technique achieved significant performance improvement over personalized questionnaire technique with RMSE, Precision, Recall,1 and NDCG of 0.200, 0.227, 0.261, 0.174 and 0.249


Sign in / Sign up

Export Citation Format

Share Document