One-Dimensional Ground Response Analysis to Arrive at Surface Peak Ground Acceleration—A Case Study of Golaghat District in Assam

Author(s):  
A. F. Siddique ◽  
D. Dutta ◽  
A. Deka
2016 ◽  
Vol 18 (1) ◽  
pp. 23
Author(s):  
Eko Rudi Iswanto ◽  
Eric Yee

COMPARISON OF EQUIVALENT LINEAR AND NON LINEAR METHODS ON GROUND RESPONSE ANALYSIS: CASE STUDY AT WEST BANGKA SITE. Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using DeepSoil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter.  The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425g and 0.375g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method.    


2021 ◽  
Author(s):  
A.H. Amjadi ◽  
Ali johari

Abstract The field and laboratory evidence of nonlinear soil behavior, even at small strains, emphasizes the ‎importance of employing nonlinear methods in seismic ground response analysis. Additionally, ‎determination of dynamic characteristics of soil layers always includes some degree of uncertainty. Most of ‎previous stochastic studies of ground response analysis have focused only on uncertainties of soil ‎parameters, and the effect of soil sample location has been mostly ignored. This study attempts to couple ‎nonlinear time-domain ground response analysis with uncertainty of soil parameters considering existing ‎boreholes’ ‎location through a geostatistical method using a program written in MATLAB. To evaluate ‎the efficiency of the proposed method, stochastic seismic ground responses at construction location were compared with those of the non-stationary random ‎field method‎ through real site data. The ‎results demonstrate that applying the boreholes’ ‎location significantly affects not only the ground ‎responses but also their Coefficient Of Variation (COV). Furthermore, the mean value of the seismic ‎responses is affected more considerably by the values of soil parameters at the vicinity of the construction location. It is also inferred that considering boreholes’ location may reduce the COV of the seismic ‎responses. Among the surface responses in the studied site, the values of Peak Ground Displacement (PGD) ‎and Peak Ground Acceleration (PGA) reflect the highest and ‎lowest dispersion due to uncertainties of soil ‎properties through both non-stationary random field and geostatistical methods.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ali Johari ◽  
Amir Hossein Amjadi ◽  
Asma Heidari

2013 ◽  
Vol 4 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Shiv Shankar Kumar ◽  
A. Murali Krishna

In this study, one dimensional equivalent–linear ground response analyses were performed for some typical sites in the Guwahati city, India. Six bore locations covering about 250 km2 area of the city were considered for the analyses. As the strong motion significantly influences the ground response, seven different recorded ground motions, varying in magnitude (6.1 to 8.1) and other ground motion parameters, were adopted. Seismic site analyses were carried out for all layers of borelogs using all the seven earthquakes. Results are presented in terms of surface acceleration histories, strain and shear stress ratio variation, response spectrum, Fourier amplitude ratio versus frequency. The results indicate that accelerations were amplified the most at the surface level. The range of peak ground acceleration (PGA) values obtained at the ground surface is about 0.2 g to 0.79 for a range of PGA considered at bedrock level (rigid half space at bottom of borelog) of 0.1 g to 0.34 g. The Fourier amplifications of ground motion at surface are in the range of 4.14 – 8.99 for a frequency band of 1.75 Hz to 3.13 Hz. The maximum spectral acceleration at six locations varies in the range of 1.0 g – 4.71 g for all the seven earthquakes. The study clearly demonstrated the role for site effect and the type of ground motion on the ground response. For a given earthquake motion, amplification factors at surface level change by almost about 20% to 70% depending on local site conditions.


Author(s):  
Devdeep Basu ◽  
Arindam Dey ◽  
Shiv Shankar Kumar

Ground response analysis (GRA) helps to assess the influence of the soil medium on the propagating shear waves and indicates about the characteristics of the waves reaching the ground surface from the bedrock level. Such a study becomes imperative for the urbanized alluvial banks of North-Eastern region of India, which is located in the highest seismic zone of the country. Conventionally, GRA is carried out based equivalent linear approach, which being a simplistic approach is unable to capture the nonlinear characteristics of saturated silty sands subjected to seismic shaking. This article presents the outcome of seismic one-dimensional nonlinear GRA of IIT Guwahati (located on a varying geology in the saturated alluvial banks of River Brahmaputra) considering pore-water pressure dissipation characteristics and non-Masing unload-reload criteria. Various ground response parameters obtained from the study helps in the accurate identification of the earthquake intensity based site amplification of the region expressed through a 2-D mapping.


2014 ◽  
Vol 919-921 ◽  
pp. 1031-1034
Author(s):  
Xiao Fei Li ◽  
Rui Sun

In order to test the applicable of the two equivalent linear seismic response analysis procedures SHAKE2000 and LSSRLI-1 for class І site, 21 underground strong motion records were selected from 11 stations of KiK-net as input earthquake motions. By using these two programs to calculate the peak ground acceleration, soil maximum shear strain and acceleration response spectra. By comparing the results of the two procedures and the measured results to evaluate the proximity of these two methods and then judge which program is closer to the real situation. Studies have shown that in class І site, the results of SHAKE2000 and LSSRLI-1 differ little; but according to the measured records, there are some differences between the two programs results and the measured records. While no matter comparing from which side, SHAKE2000 is closer to the earthquake records.


Sign in / Sign up

Export Citation Format

Share Document