linear method
Recently Published Documents


TOTAL DOCUMENTS

571
(FIVE YEARS 161)

H-INDEX

26
(FIVE YEARS 5)

Author(s):  
Hongwei Li ◽  
Xiao Wang ◽  
Junmu Lin ◽  
Lei Wu ◽  
Tong Liu

Purpose This study aims to provide a solution of the power flow calculation for the low-voltage ditrect current power grid. The direct current (DC) power grid is becoming a reliable and economic alternative to millions of residential loads. The power flow (PF) in the DC network has some similarities with the alternative current case, but there are important differences that deserve to be further concerned. Moreover, the dispatchable distributed generators (DGs) in DC network can realize the flexible voltage control based on droop-control or virtual impedance-based methods. Thus, DC PF problems are still required to further study, such as hosting all load types and different DGs. Design/methodology/approach The DC power analysis was explored in this paper, and an improved Newton–Raphson based linear PF method has been proposed. Considering that constant impedance (CR), constant current (CI) and constant power (CP) (ZIP) loads can get close to the practical load level, ZIP load has been merged into the linear PF method. Moreover, DGs are much common and can be easily connected to the DC grid, so V nodes and the dispatchable DG units with droop control have been further taken into account in the proposed method. Findings The performance and advantages of the proposed method are investigated based on the results of the various test systems. The two existing linear models were used to compare with the proposed linear method. The numerical results demonstrate enough accuracy, strong robustness and high computational efficiency of the proposed linear method even in the heavily-loaded conditions and with 10 times the line resistances. Originality/value The conductance corresponding to each constant resistance load and the equivalent conductance for the dispatchable unit can be directly merged into the self-conductance (diagonal component) of the conductance matrix. The constant current loads and the injection powers from dispatchable DG units can be treated as the current sources in the proposed method. All of those make the PF model much clear and simple. It is capable of offering enough accuracy level, and it is suitable for applications in DC networks that require a large number of repeated PF calculations to optimize the energy flows under different scenarios.


Vestnik MGTU ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 450-460
Author(s):  
V. Yu. Novikov ◽  
K. S. Rysakova ◽  
A. V. Baryshnikov

It is well known that fish belonging to the Salmonidae family differ in their nutritional value. Anatomical and morphological features of different salmon species have a certain similarity; therefore, representatives of this family are most often falsified. Assortment falsification of products from fish of this family is usually carried out by replacing more valuable species with cheaper ones with a reduced nutritional value. Most often, counterfeiting of Atlantic salmon (salmon) by Far Eastern ones (chum salmon, pink salmon, chinook salmon, coho salmon) is found. Near infrared spectroscopy (NIR) is now increasingly used for identification and authentication of closely related organisms, in some cases being a rapid method replacing genetic analysis. We have obtained diffusion reflectance spectra of NIR radiation for three species of fish from the Northern Basin belonging to the salmon family. The best classification by fish species has been obtained by analyzing the NIR spectra of pre-dried fat-free muscle tissue samples. In case of wet samples, the observed differences are less significant, up to insignificant differences in individual values from neighboring clusters. The possibility of using the method of linear discriminant analysis of the NIR reflection spectra of muscle proteins for the species identification of fish has been shown.


MAUSAM ◽  
2021 ◽  
Vol 63 (2) ◽  
pp. 283-290
Author(s):  
PIYUSH JOSHI ◽  
A. GANJU

Due to eastward moving synoptic weather system called Western Disturbance (WD), Western Himalaya receives enormous amount of precipitation in the form of snow during winter months (November to April). This precipitation keeps on accumulating and poses an avalanche threat. Temperature plays an important role for the initiation of avalanches. Therefore, prediction of maximum and minimum temperature may be quite helpful for avalanche forecasting. In the present study Artificial Neural Network (ANN), a non-linear method is used for the prediction of maximum and minimum temperature using surface meteorological data observed at various observatories in Western Himalaya region. ANN provides a computational efficient way of determining an empirical possible non-linear relationship between a number of input and one or more outputs. In present study back propagation learning algorithm is used to train the network. In the training process the relationship between input and output is extracted i.e., final weights are computed. Past data of about 25 years is used for training the network and trained network is used for temperature prediction for five winter seasons (2005-06 to 2009-10). Root mean square errors (RMSE) corresponding to maximum and minimum temperature are computed. For independent data set RMSE vary from 2.18 to 2.48 and 1.99 to 2.78 for maximum and minimum temperatures respectively.


2021 ◽  
Vol 13 (24) ◽  
pp. 4992
Author(s):  
Nicolas Nesme ◽  
Rodolphe Marion ◽  
Olivier Lezeaux ◽  
Stéphanie Doz ◽  
Claude Camy-Peyret ◽  
...  

Methane (CH4) is one of the most contributing anthropogenic greenhouse gases (GHGs) in terms of global warming. Industry is one of the largest anthropogenic sources of methane, which are currently only roughly estimated. New satellite hyperspectral imagers, such as PRISMA, open up daily temporal monitoring of industrial methane sources at a spatial resolution of 30 m. Here, we developed the Characterization of Effluents Leakages in Industrial Environment (CELINE) code to inverse images of the Korpezhe industrial site. In this code, the in-Scene Background Radiance (ISBR) method was combined with a standard Optimal Estimation (OE) approach. The ISBR-OE method avoids the use of a complete and time-consuming radiative transfer model. The ISBR-OEM developed here overcomes the underestimation issues of the linear method (LM) used in the literature for high concentration plumes and controls a posteriori uncertainty. For the Korpezhe site, using the ISBR-OEM instead of the LM -retrieved CH4 concentration map led to a bias correction on CH4 mass from 4 to 16% depending on the source strength. The most important CH4 source has an estimated flow rate ranging from 0.36 ± 0.3 kg·s−1 to 4 ± 1.76 kg·s−1 on nine dates. These local and variable sources contribute to the CH4 budget and can better constrain climate change models.


2021 ◽  
Vol 8 ◽  
Author(s):  
Maria Ribeiro ◽  
João Monteiro-Santos ◽  
Luísa Castro ◽  
Luís Antunes ◽  
Cristina Costa-Santos ◽  
...  

The analysis of fetal heart rate variability has served as a scientific and diagnostic tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being. Many mathematical analyses were proposed to evaluate fetal heart rate variability. We focused on non-linear analysis based on concepts of chaos, fractality, and complexity: entropies, compression, fractal analysis, and wavelets. These methods have been successfully applied in the signal processing phase and increase knowledge about cardiovascular dynamics in healthy and pathological fetuses. This review summarizes those methods and investigates how non-linear measures are related to each paper's research objectives. Of the 388 articles obtained in the PubMed/Medline database and of the 421 articles in the Web of Science database, 270 articles were included in the review after all exclusion criteria were applied. While approximate entropy is the most used method in classification papers, in signal processing, the most used non-linear method was Daubechies wavelets. The top five primary research objectives covered by the selected papers were detection of signal processing, hypoxia, maturation or gestational age, intrauterine growth restriction, and fetal distress. This review shows that non-linear indices can be used to assess numerous prenatal conditions. However, they are not yet applied in clinical practice due to some critical concerns. Some studies show that the combination of several linear and non-linear indices would be ideal for improving the analysis of the fetus's well-being. Future studies should narrow the research question so a meta-analysis could be performed, probing the indices' performance.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 293
Author(s):  
Alexander D. Bruno ◽  
Alexander B. Batkhin

Here we describe eight new methods, arisen in the last 60 years, to study solutions of a Hamiltonian system with n degrees of freedom. The first six of them are intended for systems with small parameters or without them. The methods allow to find families of periodic solutions and families of invariant n-dimensional tori by means of analytic computation near a stationary solution, near a periodic solution and near an invariant torus, using the corresponding normal form of a Hamiltonian. Then we can continue the founded families by means of numerical computation. In a Hamiltonian system without parameters, only periodic solutions and invariant n-dimensional tori form one-parameter families. The last two methods are intended for systems with not small parameters, which do not depend on time. They allow computing sets of parameters, which guarantee the stability of some solutions for linear (method seven) and nonlinear (method eight) systems. We do not consider chaotic behaviors, but only regular ones.


Author(s):  
Zhongruo Wang ◽  
Bingyuan Liu ◽  
Shixiang Chen ◽  
Shiqian Ma ◽  
Lingzhou Xue ◽  
...  

Spectral clustering is one of the fundamental unsupervised learning methods and is widely used in data analysis. Sparse spectral clustering (SSC) imposes sparsity to the spectral clustering, and it improves the interpretability of the model. One widely adopted model for SSC in the literature is an optimization problem over the Stiefel manifold with nonsmooth and nonconvex objective. Such an optimization problem is very challenging to solve. Existing methods usually solve its convex relaxation or need to smooth its nonsmooth objective using certain smoothing techniques. Therefore, they were not targeting solving the original formulation of SSC. In this paper, we propose a manifold proximal linear method (ManPL) that solves the original SSC formulation without twisting the model. We also extend the algorithm to solve multiple-kernel SSC problems, for which an alternating ManPL algorithm is proposed. Convergence and iteration complexity results of the proposed methods are established. We demonstrate the advantage of our proposed methods over existing methods via clustering of several data sets, including University of California Irvine and single-cell RNA sequencing data sets.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Reinhold Blümel ◽  
Nikodem Grzesiak ◽  
Neal Pisenti ◽  
Kenneth Wright ◽  
Yunseong Nam

AbstractTo achieve scalable quantum computing, improving entangling-gate fidelity and its implementation efficiency are of utmost importance. We present here a linear method to construct provably power-optimal entangling gates on an arbitrary pair of qubits on a trapped-ion quantum computer. This method leverages simultaneous modulation of amplitude, frequency, and phase of the beams that illuminate the ions and, unlike the state of the art, does not require any search in the parameter space. The linear method is extensible, enabling stabilization against external parameter fluctuations to an arbitrary order at a cost linear in the order. We implement and demonstrate the power-optimal, stabilized gate on a trapped-ion quantum computer.


Sign in / Sign up

Export Citation Format

Share Document