Study on Image Enhancement Method for Low Illumination Target Recognition

Author(s):  
Hongli Liu ◽  
Jing Cao ◽  
Xueying Wang ◽  
Anning Yang ◽  
Qiang Wang
2021 ◽  
Vol 13 (7) ◽  
pp. 1371
Author(s):  
Junshu Wang ◽  
Yue Yang ◽  
Yuan Chen ◽  
Yuxing Han

In unmanned aerial vehicle based urban observation and monitoring, the performance of computer vision algorithms is inevitably limited by the low illumination and light pollution caused degradation, therefore, the application image enhancement is a considerable prerequisite for the performance of subsequent image processing algorithms. Therefore, we proposed a deep learning and generative adversarial network based model for UAV low illumination image enhancement, named LighterGAN. The design of LighterGAN refers to the CycleGAN model with two improvements—attention mechanism and semantic consistency loss—having been proposed to the original structure. Additionally, an unpaired dataset that was captured by urban UAV aerial photography has been used to train this unsupervised learning model. Furthermore, in order to explore the advantages of the improvements, both the performance in the illumination enhancement task and the generalization ability improvement of LighterGAN were proven in the comparative experiments combining subjective and objective evaluations. In the experiments with five cutting edge image enhancement algorithms, in the test set, LighterGAN achieved the best results in both visual perception and PIQE (perception based image quality evaluator, a MATLAB build-in function, the lower the score, the higher the image quality) score of enhanced images, scores were 4.91 and 11.75 respectively, better than EnlightenGAN the state-of-the-art. In the enhancement of low illumination sub-dataset Y (containing 2000 images), LighterGAN also achieved the lowest PIQE score of 12.37, 2.85 points lower than second place. Moreover, compared with the CycleGAN, the improvement of generalization ability was also demonstrated. In the test set generated images, LighterGAN was 6.66 percent higher than CycleGAN in subjective authenticity assessment and 3.84 lower in PIQE score, meanwhile, in the whole dataset generated images, the PIQE score of LighterGAN is 11.67, 4.86 lower than CycleGAN.


2019 ◽  
Vol 496 ◽  
pp. 25-41 ◽  
Author(s):  
Wencheng Wang ◽  
Zhenxue Chen ◽  
Xiaohui Yuan ◽  
Xiaojin Wu

Author(s):  
Ashish Dwivedi ◽  
Nirupma Tiwari

Image enhancement (IE) is very important in the field where visual appearance of an image is the main. Image enhancement is the process of improving the image in such a way that the resulting or output image is more suitable than the original image for specific task. With the help of image enhancement process the quality of image can be improved to get good quality images so that they can be clear for human perception or for the further analysis done by machines.Image enhancement method enhances the quality, visual appearance, improves clarity of images, removes blurring and noise, increases contrast and reveals details. The aim of this paper is to study and determine limitations of the existing IE techniques. This paper will provide an overview of different IE techniques commonly used. We Applied DWT on original RGB image then we applied FHE (Fuzzy Histogram Equalization) after DWT we have done the wavelet shrinkage on Three bands (LH, HL, HH). After that we fuse the shrinkage image and FHE image together and we get the enhance image.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


Sign in / Sign up

Export Citation Format

Share Document