marine environments
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Victor Reyes-Umana ◽  
Jessica Kretschmer ◽  
John D. Coates

Recent reports of dissimilatory iodate-reducing microorganisms (DIRM) have arisen from studies of bacteria in marine environments. These studies described the physiology and distribution of DIRM while also demonstrating their presence in iodine-rich marine environments. We posited that despite lower iodine concentrations, terrestrial and freshwater ecosystems should also harbor DIRM. We established numerous enrichments from coastal and freshwater environments that actively remove amended iodate. We describe the physiology and genome of a new DIRM isolate, Aromatoleum toluclasticum sp. TC-10, emerging from a freshwater creek microcosm. Like other DIRM, A. toluclasticum sp. TC-10 couples acetate oxidation to iodate reduction with a concomitant increase in the OD600. Our results indicate that A. toluclasticum sp. TC-10 performs dissimilatory iodate reduction (DIR) using the recently described iodate reductase (Idr). We provide further evidence of horizontal gene transfer of the idr genes by demonstrating the lack of Idr in the closely related (99.93% 16S rDNA sequence identity) A. toluclasticum sp. MF63 and describe the heterogeneity of the accessory proteins associated with the iodate reduction island (IRI). These observations provide additional evidence that DIR is a horizontally acquired metabolism with broad environmental distribution beyond exclusively marine environments.

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 99
Htoo Nay Wunn ◽  
Shinichi Motoda ◽  
Motoaki Morita

One of the effective ways of utilizing marine environments is to generate energy, power, and hydrogen via the effect of photocatalysts in the seawater. Since the ocean is vast, we are able to use its large area, but the power generation system must be of low cost and have high durability against both force and corrosion. In order to meet those requirements, this study focuses on the fabrication of a novel marine wet solar cell composed of a titanium dioxide photoanode and a copper oxide photocathode. These electrodes were deposited on type 329J4L stainless steel, which possesses relative durability in marine environments. This study focuses on the characterization of the photocatalytic properties of electrodes in seawater. Low-cost manufacturing processes of screen-printing and vacuum vapor deposition were applied to produce the titanium dioxide and copper oxides electrodes, respectively. We investigated the photopotential of the electrodes, along with the electrochemical properties and cell voltage properties of the cell. X-ray diffraction spectroscopy (XRD) of the copper oxides electrode was analyzed in association with the loss of photocatalytic effect in the copper oxides electrode. Although the conversion efficiency of the wet cell was less than 1%, it showed promising potential for use in marine environments with low-cost production. Electrochemical impedance spectroscopy (EIS) of the cell was also conducted, from which impedance values regarding the electrical properties of electrodes and their interfaces of charge-transfer processes were obtained. This study focuses on the early phase of the marine wet solar cell, which should be further studied for long-term stability and in actual marine environmental applications.

A. Loulidi ◽  
R. Houssa ◽  
L. Buhl-Mortensen ◽  
H. Zidane ◽  
H. Rhinane

Abstract. The marine environment provides many ecosystems that support habitats biodiversity. Benthic habitats and fish species associations are investigated using underwater gears to secure and manage these marine ecosystems in a sustainable manner. The current study evaluates the possibility of using deep learning methods in particular the You Only Look Once version 3 algorithm to detect fish in different environments such as; different shading, low light, and high noise within images and by each frame within an underwater video, recorded in the Atlantic Coast of Morocco. The training dataset was collected from Open Images Dataset V6, a total of 1295 Fish images were captured and split into a training set and a test set. An optimization approach was applied to the YOLOv3 algorithm which is data augmentation transformation to provide more learning samples. The mean average precision (mAP) metric was applied to measure the YOLOv3 model’s performance. Results of this study revealed with a mAP of 91,3% the proposed method is proved to have the capability of detecting fish species in different natural marine environments also it has the potential to be applied to detect other underwater species and substratum.

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 62
Lesley-Ann Giddings ◽  
David J. Newman

Marine environments are underexplored terrains containing fungi that produce a diversity of natural products given unique environmental pressures and nutrients. While bacteria are commonly the most studied microorganism for natural products in the marine world, marine fungi are also abundant but remain an untapped source of bioactive metabolites. Given that their terrestrial counterparts have been a source of many blockbuster antitumor agents and anti-infectives, including camptothecin, the penicillins, and cyclosporin A, marine fungi also have the potential to produce new chemical scaffolds as leads to potential drugs. Fungi are more phylogenetically diverse than bacteria and have larger genomes that contain many silent biosynthetic gene clusters involved in making bioactive compounds. However, less than 5% of all known fungi have been cultivated under standard laboratory conditions. While the number of reported natural products from marine fungi is steadily increasing, their number is still significantly lower compared to those reported from their bacterial counterparts. Herein, we discuss many varied cytotoxic and anti-infective fungal metabolites isolated from extreme marine environments, including symbiotic associations as well as extreme pressures, temperatures, salinity, and light. We also discuss cultivation strategies that can be used to produce new bioactive metabolites or increase their production. This review presents a large number of reported structures though, at times, only a few of a large number of related structures are shown.

Abstract Understanding ice development in Cumulus Congestus (CuCg) clouds, which are ubiquitous globally, is critical for improving our knowledge of cloud physics, cloud resolution and climate prediction models. Results presented here are representative of data collected in 1,008 penetrations of moderate to strong updrafts in CuCg clouds by five research aircraft in six geographic locations. The results show that CuCg with warm (> ∼20°C) cloud base temperatures, such as in tropical marine environments, experience a strong collision-coalescence process. Development of coalescence is also correlated with drop effective radius > ∼12 to 14 µm in diameter. Increasing the cloud-base drop concentration with diameters from 15 to 35 µm and decreasing the drop concentration < 15 µm appears to enhance coalescence. While the boundary-layer aerosol population is not a determinate factor in development of coalescence in tropical marine environments, its impact on coalescence is not yet fully determined. Some supercooled large drops generated via coalescence fracture when freezing, producing a secondary ice process (SIP) with production of copious small ice particles that naturally seed the cloud. The SIP produces an avalanche effect, freezing the majority of supercooled liquid water before fresh updrafts reach the −16°C level. Conversely, CuCg with cloud base temperatures ≤ ∼8°C develop significant concentrations of ice particles at colder temperatures, so that small supercooled water drops are lofted to higher elevations before freezing. Recirculation of ice in downdrafts at the edges of updrafts appears to be the primary mechanism for development of precipitation in CuCg with colder cloud base temperatures.

Yue Wang ◽  
Charlie J.E. Davey ◽  
Kevin van der Maas ◽  
Robert-Jan van Putten ◽  
Albert Tietema ◽  

2021 ◽  
Vol 54 (2F) ◽  
pp. 1-12
Mohammed Al-Abbasi ◽  
Majid Al-Mutwali ◽  
Nabil Al-Banna

Biostratigraphical and sedimentological study of the Sarmord Formation (Upper Valanginian - Upper Hauterivian) at the southern limb of Maten anticline is conducted within a well-exposed section. The formation is composed of marl, marly limestone, limestone, and dolostone, which yielded moderately diversified benthonic foraminiferal fauna, green algae, echinoderms, gastropods and some bioclast. The stratigraphic distribution of the benthonic species permits the recognition of two well-defined biozones. These are Everticyclammina kelleri Assemblage Zone, which represents the Late Valanginian age and Pseudocyclammina lituus Assemblage Zone, indicating Hauterivian age. These larger benthonic foraminiferal biozones are correlated with other zonal schemes inside and outside of Iraq, which indicates that the age of the Sarmord Formation in Maten anticline extends from Late Valanginian to Late Hauterivian age. The Sarmord Formation in the studied section is composed of limestone, dolomite, marl and conglomerate lithofacies types. Limestone lithofacies is represented by lime wackestone microfacies. According to the characteristic features of these facies, the depositional environments extend from tidal flat to shallow open marine environments.

Sign in / Sign up

Export Citation Format

Share Document