scholarly journals Semantic Segmentation of Crop and Weed using an Encoder-Decoder Network and Image Enhancement Method under Uncontrolled Outdoor Illumination

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 81724-81734 ◽  
Author(s):  
Aichen Wang ◽  
Yifei Xu ◽  
Xinhua Wei ◽  
Bingbo Cui
Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 997
Author(s):  
Yun Peng ◽  
Aichen Wang ◽  
Jizhan Liu ◽  
Muhammad Faheem

Accurate fruit segmentation in images is the prerequisite and key step for precision agriculture. In this article, aiming at the segmentation of grape cluster with different varieties, 3 state-of-the-art semantic segmentation networks, i.e., Fully Convolutional Network (FCN), U-Net, and DeepLabv3+ applied on six different datasets were studied. We investigated: (1) the segmentation performance difference of the 3 studied networks; (2) The impact of different input representations on segmentation performance; (3) The effect of image enhancement method to improve the poor illumination of images and further improve the segmentation performance; (4) The impact of the distance between grape clusters and camera on segmentation performance. The experiment results show that compared with FCN and U-Net the DeepLabv3+ combined with transfer learning is more suitable for the task with an intersection over union (IoU) of 84.26%. Five different input representations, namely RGB, HSV, L*a*b, HHH, and YCrCb obtained different IoU, ranging from 81.5% to 88.44%. Among them, the L*a*b got the highest IoU. Besides, the adopted Histogram Equalization (HE) image enhancement method could improve the model’s robustness against poor illumination conditions. Through the HE preprocessing, the IoU of the enhanced dataset increased by 3.88%, from 84.26% to 88.14%. The distance between the target and camera also affects the segmentation performance, no matter in which dataset, the closer the distance, the better the segmentation performance was. In a word, the conclusion of this research provides some meaningful suggestions for the study of grape or other fruit segmentation.


Author(s):  
Ashish Dwivedi ◽  
Nirupma Tiwari

Image enhancement (IE) is very important in the field where visual appearance of an image is the main. Image enhancement is the process of improving the image in such a way that the resulting or output image is more suitable than the original image for specific task. With the help of image enhancement process the quality of image can be improved to get good quality images so that they can be clear for human perception or for the further analysis done by machines.Image enhancement method enhances the quality, visual appearance, improves clarity of images, removes blurring and noise, increases contrast and reveals details. The aim of this paper is to study and determine limitations of the existing IE techniques. This paper will provide an overview of different IE techniques commonly used. We Applied DWT on original RGB image then we applied FHE (Fuzzy Histogram Equalization) after DWT we have done the wavelet shrinkage on Three bands (LH, HL, HH). After that we fuse the shrinkage image and FHE image together and we get the enhance image.


Author(s):  
ZHAO Baiting ◽  
WANG Feng ◽  
JIA Xiaofen ◽  
GUO Yongcun ◽  
WANG Chengjun

Background:: Aiming at the problems of color distortion, low clarity and poor visibility of underwater image caused by complex underwater environment, a wavelet fusion method UIPWF for underwater image enhancement is proposed. Methods:: First of all, an improved NCB color balance method is designed to identify and cut the abnormal pixels, and balance the color of R, G and B channels by affine transformation. Then, the color correction map is converted to CIELab color space, and the L component is equalized with contrast limited adaptive histogram to obtain the brightness enhancement map. Finally, different fusion rules are designed for low-frequency and high-frequency components, the pixel level wavelet fusion of color balance image and brightness enhancement image is realized to improve the edge detail contrast on the basis of protecting the underwater image contour. Results:: The experiments demonstrate that compared with the existing underwater image processing methods, UIPWF is highly effective in the underwater image enhancement task, improves the objective indicators greatly, and produces visually pleasing enhancement images with clear edges and reasonable color information. Conclusion:: The UIPWF method can effectively mitigate the color distortion, improve the clarity and contrast, which is applicable for underwater image enhancement in different environments.


2021 ◽  
Vol 9 (2) ◽  
pp. 225
Author(s):  
Farong Gao ◽  
Kai Wang ◽  
Zhangyi Yang ◽  
Yejian Wang ◽  
Qizhong Zhang

In this study, an underwater image enhancement method based on local contrast correction (LCC) and multi-scale fusion is proposed to resolve low contrast and color distortion of underwater images. First, the original image is compensated using the red channel, and the compensated image is processed with a white balance. Second, LCC and image sharpening are carried out to generate two different image versions. Finally, the local contrast corrected images are fused with sharpened images by the multi-scale fusion method. The results show that the proposed method can be applied to water degradation images in different environments without resorting to an image formation model. It can effectively solve color distortion, low contrast, and unobvious details of underwater images.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Huajun Song ◽  
Rui Wang

Aimed at the two problems of color deviation and poor visibility of the underwater image, this paper proposes an underwater image enhancement method based on the multi-scale fusion and global stretching of dual-model (MFGS), which does not rely on the underwater optical imaging model. The proposed method consists of three stages: Compared with other color correction algorithms, white-balancing can effectively eliminate the undesirable color deviation caused by medium attenuation, so it is selected to correct the color deviation in the first stage. Then, aimed at the problem of the poor performance of the saliency weight map in the traditional fusion processing, this paper proposed an updated strategy of saliency weight coefficient combining contrast and spatial cues to achieve high-quality fusion. Finally, by analyzing the characteristics of the results of the above steps, it is found that the brightness and clarity need to be further improved. The global stretching of the full channel in the red, green, blue (RGB) model is applied to enhance the color contrast, and the selective stretching of the L channel in the Commission International Eclairage-Lab (CIE-Lab) model is implemented to achieve a better de-hazing effect. Quantitative and qualitative assessments on the underwater image enhancement benchmark dataset (UIEBD) show that the enhanced images of the proposed approach achieve significant and sufficient improvements in color and visibility.


Author(s):  
Lingyu Yan ◽  
Jiarun Fu ◽  
Chunzhi Wang ◽  
Zhiwei Ye ◽  
Hongwei Chen ◽  
...  

AbstractWith the development of image recognition technology, face, body shape, and other factors have been widely used as identification labels, which provide a lot of convenience for our daily life. However, image recognition has much higher requirements for image conditions than traditional identification methods like a password. Therefore, image enhancement plays an important role in the process of image analysis for images with noise, among which the image of low-light is the top priority of our research. In this paper, a low-light image enhancement method based on the enhanced network module optimized Generative Adversarial Networks(GAN) is proposed. The proposed method first applied the enhancement network to input the image into the generator to generate a similar image in the new space, Then constructed a loss function and minimized it to train the discriminator, which is used to compare the image generated by the generator with the real image. We implemented the proposed method on two image datasets (DPED, LOL), and compared it with both the traditional image enhancement method and the deep learning approach. Experiments showed that our proposed network enhanced images have higher PNSR and SSIM, the overall perception of relatively good quality, demonstrating the effectiveness of the method in the aspect of low illumination image enhancement.


Sign in / Sign up

Export Citation Format

Share Document