Sharp Interface Level Set Method on a Co-located Grid for High Density Ratio Two-Fluid Flow

Author(s):  
C. S. Sanjid ◽  
Janani Srree Murallidharan ◽  
Atul Sharma
2017 ◽  
Vol 34 (3) ◽  
pp. 709-724 ◽  
Author(s):  
Amirmahdi Ghasemi ◽  
R. Nikbakhti ◽  
Amirreza Ghasemi ◽  
Faraz Hedayati ◽  
Amir Malvandi

Purpose A numerical method is developed to capture the interaction of solid object with two-phase flow with high density ratios. The current computational tool would be the first step of accurate modeling of wave energy converters in which the immense energy of the ocean can be extracted at low cost. Design/methodology/approach The full two-dimensional Navier–Stokes equations are discretized on a regular structured grid, and the two-step projection method along with multi-processing (OpenMP) is used to efficiently solve the flow equations. The level set and the immersed boundary methods are used to capture the free surface of a fluid and a solid object, respectively. The full two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the flow field. Level set and immersed boundary methods are used to capture the free surface of liquid and solid object, respectively. A proper contact angle between the solid object and the fluid is used to enhance the accuracy of the advection of the mass and momentum of the fluids in three-phase cells. Findings The computational tool is verified based on numerical and experimental data with two scenarios: a cylinder falling into a rectangular domain due to gravity and a dam breaking in the presence of a fixed obstacle. In the former validation simulation, the accuracy of the immersed boundary method is verified. However, the accuracy of the level set method while the computational tool can model the high-density ratio is confirmed in the dam-breaking simulation. The results obtained from the current method are in good agreement with experimental data and other numerical studies. Practical/implications The computational tool is capable of being parallelized to reduce the computational cost; therefore, an OpenMP is used to solve the flow equations. Its application is seen in the following: wind energy conversion, interaction of solid object such as wind turbine with water waves, etc. Originality/value A high efficient CFD approach method is introduced to capture the interaction of solid object with a two-phase flow where they have high-density ratio. The current method has the ability to efficiently be parallelized.


Author(s):  
Qiu Jin ◽  
Dominic Hudson ◽  
W.G. Price

Abstract A combined volume of fluid and immersed boundary method is developed to simulate two-phase flows with high density ratio. The problems of discontinuity of density and momentum flux are known to be challenging in simulations. In order to overcome the numerical instabilities, an extra velocity field is designed to extend velocity of the heavier phase into the lighter phase and to enforce a new boundary condition near the interface, which is similar to non-slip boundary conditions in Fluid-Structure Interaction (FSI) problems. The interface is captured using a Volume of Fluid (VOF) method, and a new boundary layer is built on the lighter phase side by an immersed boundary method. The designed boundary layer helps to reduce the spurious velocity caused by the imbalance of dynamic pressure gradient and density gradient and to prevent tearing of the interface due to the tangential velocity across the interface. The influence of time step, density ratio, and spatial resolution is studied in detail for two set of cases, steady stratified flow and convection of a high-density droplet, where direct comparison is possible to potential flow analysis (i.e. infinite Reynold's number). An initial study for a droplet splashing on a thin liquid film demonstrates applicability of the new solver to real-life applications. Detailed comparisons should be performed in the future for finite Reynold's number cases to fully demonstrate the improvements in accuracy and stability of high-density ratio two-phase flow simulations offered by the new method.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350094 ◽  
Author(s):  
HUI TIAN ◽  
GUOJUN LI ◽  
XIONGWEN ZHANG

An improved particle correction procedure for particle level set method is proposed and applied to the simulation of Rayleigh–Taylor instability (RTI) of the incompressible two-phase immiscible fluids. In the proposed method, an improved particle correction method is developed to deal with all the relative positions between escaped particles and cell corners, which can reduce the disturbance arising in the distance function correction process due to the non-normal direction movement of escaped particles. The improved method is validated through accurately capturing the moving interface of the Zalesak's disk. Furthermore, coupled with the projection method for solving the Navier–Stokes equations, the time-dependent evolution of the RTI interface over a wide range of Reynolds numbers, Atwood numbers and Weber numbers are numerically investigated. A good agreement between the present results and the existing analytical solutions is obtained and the accuracy of the proposed method is further verified. Moreover, the effects of control parameters including viscosity, density ratio, and surface tension coefficient on the evolution of RTI are analyzed in detail, and a critical Weber number for the development of RTI is found.


Sign in / Sign up

Export Citation Format

Share Document