rising bubble
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 3)

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1067
Author(s):  
Mariusz Borkowski ◽  
Jan Zawala

Data in the literature on the influence of water temperature on the terminal velocity of a single rising bubble are highly contradictory. Different variations in bubble velocity with temperature are reported even for potentially pure systems. This paper presents a systematic study on the influence of temperature between 5 °C and 45 °C on the motion of a single bubble of practically constant size (equivalent radius 0.74 ± 0.01 mm) rising in a clean water and n-pentanol solution of different concentrations. The bubble velocity was measured by a camera, an ultrasonic sensor reproduced in numerical simulations. Results obtained by image analysis (camera) were compared to the data measured by an ultrasonic sensor to reveal the similar scientific potential of the latter. It is shown that temperature has a significant effect on the velocity of the rising bubble. In pure liquid, this effect is caused only by modifying the physicochemical properties of the water phase, not by changing the hydrodynamic boundary conditions at the bubble surface. In the case of the solutions with surface-active substances, the temperature-change kinetics of the dynamic adsorption layer formation facilitate the immobilization of the liquid/gas interface.


Author(s):  
Andre Weiner ◽  
Claire Claassen ◽  
Irian Hierck ◽  
J.A.M. (Hans) Kuipers ◽  
Maike Baltussen

The mass transfer between a rising bubble and the surrounding liquid is mainly determined by an extremely thin layer of dissolved gas forming at the liquid side of the gas-liquid interface. Resolving this concentration boundary layer in numerical simulations is computationally expensive. Subgrid-scale models mitigate the resolution requirements enormously and allow approximating the mass transfer in industrially relevant flow conditions with high accuracy. However, the development and validation of such models is difficult as only integral mass transfer data for steady-state conditions are available. Therefore, it is difficult to assess the validity of the sub-grid models in transient conditions. In this contribution, we compare the local and global mass transfer of an improved subgrid-scale model for rising bubbles (Re = 72-569 and Sc = 10^2-10^4) to a single-phase simulation approach, which maps the two-phase flow field to a highly-resolved mesh comprising only the liquid phase.


2021 ◽  
pp. 117102
Author(s):  
Gaëlle Lebrun ◽  
Sanae Benaissa ◽  
Claude Le Men ◽  
Véronique Pimienta ◽  
Gilles Hébrard ◽  
...  

2021 ◽  
Vol 39 (3) ◽  
pp. 1001-1014
Author(s):  
Yap Yit Fatt ◽  
Afshin Goharzadeh

Particle deposition occurs in many engineering multiphase flows. A model for particle deposition in two-fluid flow is presented in this article. The two immiscible fluids with one carrying particles are model using incompressible Navier-Stokes equations. Particles are assumed to deposit onto surfaces as a first order reaction. The evolving interfaces: fluid-fluid interface and fluid-deposit front, are captured using the level-set method. A finite volume method is employed to solve the governing conservation equations. Model verifications are made against limiting cases with known solutions. The model is then used to investigate particle deposition in a stratified two-fluid flow and a cavity with a rising bubble. For a stratified two-fluid flow, deposition occurs more rapidly for a higher Damkholer number but a lower viscosity ratio (fluid without particle to that with particles). For a cavity with a rising bubble, deposition is faster for a higher Damkholer number and a higher initial particle concentration, but is less affected by viscosity ratio.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 452
Author(s):  
Jakub Crha ◽  
Pavlína Basařová ◽  
Marek C. Ruzicka ◽  
Ondřej Kašpar ◽  
Maria Zednikova

Multiphase flows are a part of many industrial processes, where the bubble motion influences the hydrodynamic behavior of the batch. The current trend is to use numerical solvers that can simulate the movement and mutual interactions of bubbles. The aim of this work was to study how two commercial CFD solvers, COMSOL Multiphysics and Ansys Fluent, can simulate the motion of a single rising bubble in a stagnant liquid. Simulations were performed for spherical or slightly deformed bubbles (Db = 0.6, 0.8, and 1.5 mm) rising in water or in propanol. A simple 2D axisymmetric approach was used. Calculated bubble terminal velocities and bubble shape deformations were compared to both experimental data and theoretical estimations. Solver Comsol Multiphysics was able to precisely calculate the movement of smaller and larger bubbles; due to the 2D rotational symmetry, better results were obtained for small spherical bubbles. The deformation of larger bubbles was calculated sufficiently. Solver Ansys Fluent, in the setting used, failed to simulate the motion of small bubbles due to parasitic currents but allowed for modeling of the motion of larger bubbles. However, the description of the bubble velocity and shape was worse in comparison with experimental values.


2021 ◽  
Vol 3 ◽  
pp. 22-29
Author(s):  
Nguyen Viet Khoi Nguyen ◽  
Do Quang Khanh ◽  
Hoang Van Hieu ◽  
Pham Huu Tai

Bài báo trình bày phương pháp sử dụng thuật toán di truyền (Genetic Algorithm - GA) để xây dựng phương trình thực nghiệm xác định giá trị áp suất hòa trộn tối thiểu (Minimum Miscibility Pressure - MMP) trong quá trình bơm ép khí CO2 vào vỉa dầu.  Kết quả so sánh với các mô hình đã được công bố cho thấy, phương pháp sử dụng thuật toán GA giúp dễ dàng xác định giá trị MMP, có độ tin cậy cao, giúp tiết kiệm thời gian và kinh phí so với phương pháp thí nghiệm truyền thống như Slimtube, Rising Bubble, hoặc Vanishing Interfacial Tension (VIT)...


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Vikram S. Dharodi ◽  
Amita Das

Rayleigh–Taylor (RT) and buoyancy-driven (BD) instabilities are driven by gravity in a fluid system with inhomogeneous density. The paper investigates these instabilities for a strongly coupled dusty plasma medium. This medium has been represented here in the framework of the generalized hydrodynamics (GHD) fluid model which treats it as a viscoelastic medium. The incompressible limit of the GHD model is considered here. The RT instability is explored both for gradual and sharp density gradients stratified against gravity. The BD instability is discussed by studying the evolution of a rising bubble (a localized low-density region) and a falling droplet (a localized high-density region) in the presence of gravity. Since both the rising bubble and falling droplet have symmetry in spatial distribution, we observe that a falling droplet process is equivalent to a rising bubble. We also find that both the gravity-driven instabilities get suppressed with increasing coupling strength of the medium. These observations have been illustrated analytically as well as by carrying out two-dimensional nonlinear simulations. Part 2 of this paper is planned to extend the present study of the individual evolution of a bubble and a droplet to their combined evolution in order to understand the interaction between them.


Sign in / Sign up

Export Citation Format

Share Document