Flow-Based Detection and Mitigation of Low-Rate DDOS Attack in SDN Environment Using Machine Learning Techniques

2021 ◽  
pp. 193-205
Author(s):  
K. Muthamil Sudar ◽  
P. Deepalakshmi
2014 ◽  
Vol 20 (1) ◽  
pp. 175-178
Author(s):  
Mostafa Behzadi ◽  
Ramlan Mahmod ◽  
Mehdi Barati ◽  
Azizol Bin Hj Abdullah ◽  
Mahda Noura

Author(s):  
Vinod Desai ◽  
Aravind Pradhani ◽  
Sheetal Majukar

Recently, damage caused by DDoS attacks increases year by year. Along with the advancement of communication technology, this kind of attack also evolves and it has become more complicated and hard to detect using flash crowd agent, slow rate attack and also amplification attack that exploits a vulnerability in DNS server. Fast detection of the DDoS attack, quick response mechanisms and proper mitigation are a must for an organization. An investigation has been performed on DDoS attack and it analyzes the details of its phase using machine learning technique to classify the network status. In this paper, we propose a hybrid KNN-SVM method on classifying, detecting and predicting the DDoS attack. The simulation result showed that each phase of the attack scenario is partitioned well and we can detect precursors of DDoS attack as well as the attack itself.


Author(s):  
Rochak Swami ◽  
Mayank Dave ◽  
Virender Ranga

Distributed denial of service (DDoS) attack is one of the most disastrous attacks that compromises the resources and services of the server. DDoS attack makes the services unavailable for its legitimate users by flooding the network with illegitimate traffic. Most commonly, it targets the bandwidth and resources of the server. This chapter discusses various types of DDoS attacks with their behavior. It describes the state-of-the-art of DDoS attacks. An emerging technology named “Software-defined networking” (SDN) has been developed for new generation networks. It has become a trending way of networking. Due to the centralized networking technology, SDN suffers from DDoS attacks. SDN controller manages the functionality of the complete network. Therefore, it is the most vulnerable target of the attackers to be attacked. This work illustrates how DDoS attacks affect the whole working of SDN. The objective of this chapter is also to provide a better understanding of DDoS attacks and how machine learning approaches may be used for detecting DDoS attacks.


Author(s):  
Rochak Swami ◽  
Mayank Dave ◽  
Virender Ranga

Distributed denial of service (DDoS) attack is one of the most disastrous attacks that compromises the resources and services of the server. DDoS attack makes the services unavailable for its legitimate users by flooding the network with illegitimate traffic. Most commonly, it targets the bandwidth and resources of the server. This chapter discusses various types of DDoS attacks with their behavior. It describes the state-of-the-art of DDoS attacks. An emerging technology named “Software-defined networking” (SDN) has been developed for new generation networks. It has become a trending way of networking. Due to the centralized networking technology, SDN suffers from DDoS attacks. SDN controller manages the functionality of the complete network. Therefore, it is the most vulnerable target of the attackers to be attacked. This work illustrates how DDoS attacks affect the whole working of SDN. The objective of this chapter is also to provide a better understanding of DDoS attacks and how machine learning approaches may be used for detecting DDoS attacks.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

Sign in / Sign up

Export Citation Format

Share Document