A New Framework for Classification of Distributed Denial of Service (DDOS) Attack in Cloud Computing by Machine Learning Techniques

2014 ◽  
Vol 20 (1) ◽  
pp. 175-178
Author(s):  
Mostafa Behzadi ◽  
Ramlan Mahmod ◽  
Mehdi Barati ◽  
Azizol Bin Hj Abdullah ◽  
Mahda Noura
2020 ◽  
Vol 17 (8) ◽  
pp. 3765-3769
Author(s):  
N. P. Ponnuviji ◽  
M. Vigilson Prem

Cloud Computing has revolutionized the Information Technology by allowing the users to use variety number of resources in different applications in a less expensive manner. The resources are allocated to access by providing scalability flexible on-demand access in a virtual manner, reduced maintenance with less infrastructure cost. The majority of resources are handled and managed by the organizations over the internet by using different standards and formats of the networking protocols. Various research and statistics have proved that the available and existing technologies are prone to threats and vulnerabilities in the protocols legacy in the form of bugs that pave way for intrusion in different ways by the attackers. The most common among attacks is the Distributed Denial of Service (DDoS) attack. This attack targets the cloud’s performance and cause serious damage to the entire cloud computing environment. In the DDoS attack scenario, the compromised computers are targeted. The attacks are done by transmitting a large number of packets injected with known and unknown bugs to a server. A huge portion of the network bandwidth of the users’ cloud infrastructure is affected by consuming enormous time of their servers. In this paper, we have proposed a DDoS Attack detection scheme based on Random Forest algorithm to mitigate the DDoS threat. This algorithm is used along with the signature detection techniques and generates a decision tree. This helps in the detection of signature attacks for the DDoS flooding attacks. We have also used other machine learning algorithms and analyzed based on the yielded results.


Author(s):  
Gopal Singh Kushwah ◽  
Virender Ranga

Cloud computing has now become a part of many businesses. It provides on-demand resources to its users based on pay-as-you-use policy, across the globe. The high availability feature of this technology is affected by distributed denial of service (DDoS) attack, which is a major security issue. In this attack, cloud or network resources are exhausted, resulting in a denial of service for legitimate users. In this chapter, a classification of various types of DDoS attacks has been presented, and techniques for defending these attacks in cloud computing have been discussed. A discussion on challenges and open issues in this area is also given. Finally, a conceptual model based on extreme learning machine has been proposed to defend these attacks.


Author(s):  
Arnold Ojugo ◽  
Andrew Okonji Eboka

The advent of the Internet that aided the efficient sharing of resources. Also, it has introduced adversaries whom are today restlessly in their continued efforts at an effective, non-detectable means to invade secure systems, either for fun or personal gains. They achieve these feats via the use of malware, which is both on the rise, wreaks havoc alongside causing loads of financial losses to users. With the upsurge to counter these escapades, users and businesses today seek means to detect these evolving behavior and pattern by these adversaries. It is also to worthy of note that adversaries have also evolved, changing their own structure to make signature detection somewhat unreliable and anomaly detection tedious to network administrators. Our study investigates the detection of the distributed denial of service (DDoS) attacks using machine learning techniques. Results shows that though evolutionary models have been successfully implemented in the detection DDoS, the search for optima is an inconclusive and continuous task. That no one method yields a better optima than hybrids. That with hybrids, users must adequately resolve the issues of data conflicts arising from the dataset to be used, conflict from the adapted statistical methods arising from data encoding, and conflicts in parameter selection to avoid model overtraining, over-fitting and over-parameterization.


Author(s):  
Rochak Swami ◽  
Mayank Dave ◽  
Virender Ranga

Distributed denial of service (DDoS) attack is one of the most disastrous attacks that compromises the resources and services of the server. DDoS attack makes the services unavailable for its legitimate users by flooding the network with illegitimate traffic. Most commonly, it targets the bandwidth and resources of the server. This chapter discusses various types of DDoS attacks with their behavior. It describes the state-of-the-art of DDoS attacks. An emerging technology named “Software-defined networking” (SDN) has been developed for new generation networks. It has become a trending way of networking. Due to the centralized networking technology, SDN suffers from DDoS attacks. SDN controller manages the functionality of the complete network. Therefore, it is the most vulnerable target of the attackers to be attacked. This work illustrates how DDoS attacks affect the whole working of SDN. The objective of this chapter is also to provide a better understanding of DDoS attacks and how machine learning approaches may be used for detecting DDoS attacks.


Distributed Denial of Service Attack (DDoS) is a deadliest weapon which overwhelm the server or network by sending flood of packets towards it. The attack disrupts the services running on the target thereby blocking the legitimate traffic accessing its services. Various advanced machine learning techniques have been applied for detection of different types of DDoS attacks but still the attack remains a potential threat to the world. There are mainly two broad categories of machine learning techniques: supervised machine learning approach and unsupervised machine learning approach. Supervised machine learning approach requires labelled attack traffic datasets whereas unsupervised machine learning approach analyses incoming network traffic and then categorizes it. In this paper we have attempted to apply four different classifiers for the detection of DDoS attacks. The four classifiers applied are Logistic Regression, Naïve Bayes, K- Nearest Neighbor and Artificial Neural Network. The chosen classifiers provide stable results when there is a large dataset. We compared their detection accuracy on KDD dataset which is a benchmark dataset in the field of network security. This paper is novel as it explains each pre-processing step with python conversion functions and explained in detail all the classifiers and detection accuracy with their functions in python as well.


Author(s):  
Gopal Singh Kushwah ◽  
Virender Ranga

Cloud computing has now become a part of many businesses. It provides on-demand resources to its users based on pay-as-you-use policy, across the globe. The high availability feature of this technology is affected by distributed denial of service (DDoS) attack, which is a major security issue. In this attack, cloud or network resources are exhausted, resulting in a denial of service for legitimate users. In this chapter, a classification of various types of DDoS attacks has been presented, and techniques for defending these attacks in cloud computing have been discussed. A discussion on challenges and open issues in this area is also given. Finally, a conceptual model based on extreme learning machine has been proposed to defend these attacks.


Author(s):  
Rochak Swami ◽  
Mayank Dave ◽  
Virender Ranga

Distributed denial of service (DDoS) attack is one of the most disastrous attacks that compromises the resources and services of the server. DDoS attack makes the services unavailable for its legitimate users by flooding the network with illegitimate traffic. Most commonly, it targets the bandwidth and resources of the server. This chapter discusses various types of DDoS attacks with their behavior. It describes the state-of-the-art of DDoS attacks. An emerging technology named “Software-defined networking” (SDN) has been developed for new generation networks. It has become a trending way of networking. Due to the centralized networking technology, SDN suffers from DDoS attacks. SDN controller manages the functionality of the complete network. Therefore, it is the most vulnerable target of the attackers to be attacked. This work illustrates how DDoS attacks affect the whole working of SDN. The objective of this chapter is also to provide a better understanding of DDoS attacks and how machine learning approaches may be used for detecting DDoS attacks.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Sign in / Sign up

Export Citation Format

Share Document