scholarly journals Mean-Field Analysis of Sourlas Codes with Adiabatic Reverse Annealing

2021 ◽  
pp. 319-334
Author(s):  
Shunta Arai

AbstractIn this chapter, we analyze the typical performance of adiabatic reverse annealing (ARA) for Sourlas codes. Sourlas codes are representative error-correcting codes related to p-body spin-glass models and have a first-order phase transition for $$p>2$$ p > 2 , which degrades the estimation performance. In the ARA formulation, we introduce the initial Hamiltonian which incorporates the prior information of the solution into a vanilla quantum annealing (QA) formulation. The ground state of the initial Hamiltonian represents the initial candidate solution. To avoid the first-order phase transition, we apply ARA to Sourlas codes. We evaluate the typical ARA performance for Sourlas codes using the replica method. We show that ARA can avoid the first-order phase transition if we prepare for the proper initial candidate solution.

2020 ◽  
Vol 102 (20) ◽  
Author(s):  
Yoshiki Kuwata ◽  
Hisashi Kotegawa ◽  
Hideki Tou ◽  
Hisatomo Harima ◽  
Qing-Ping Ding ◽  
...  

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


Nano Letters ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 1282-1288 ◽  
Author(s):  
Kaikai Li ◽  
Xiaoye Zhou ◽  
Anmin Nie ◽  
Sheng Sun ◽  
Yan-Bing He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document