U-Net Based Optic Cup and Disk Segmentation from Retinal Fundus Images via Entropy Sampling

2021 ◽  
pp. 479-489
Author(s):  
Arindam Chowdhury ◽  
Rohit Agarwal ◽  
Alloy Das ◽  
Debashis Nandi

Glaucoma is one of the major causes of vision loss in today’s world. Glaucoma is a disease in the eye where fluid pressure in the eye increases; if it is not timely cured, the patient may lose their vision. Glaucoma can be detected by examining boundary of optics cup and optics disc acquired from fundus images. The proposed method suggest automatic detect the boundary of optics cup and optics disc with processing of fundus images. This paper explores the new approach fast fuzzy C-mean technique for segmenting the optic disc and optic cup in fundus images. Results evaluated by fast fuzzy C mean a technique is faster than fuzzy C-mean method. The proposed method reported results to 91.91%, 90.49% and 90.17% when tested on DRIONS, DRIVE and STARE on publicly available databases of fundus images.


Author(s):  
Pulung Hendro Prastyo ◽  
Amin Siddiq Sumi ◽  
Annis Nuraini

Retinal fundus images are used by ophthalmologists to diagnose eye disease, such as glaucoma disease. The diagnosis of glaucoma is done by measuring changes in the cup-to-disc ratio. Segmenting the optic cup helps petrify ophthalmologists calculate the CDR of the retinal fundus image. This study proposed a deep learning approach using U-Net architecture to carry out segmentation task. This proposed method was evaluated on 650 color retinal fundus image. Then, U-Net was configured using 160 epochs, image input size = 128x128, Batch size = 32, optimizer = Adam, and loss function = Binary Cross Entropy. We employed the Dice Coefficient as the evaluator. Besides, the segmentation results were compared to the ground truth images. According to the experimental results, the performance of optic cup segmentation achieved 98.42% for the Dice coefficient and loss of 1,58%. These results implied that our proposed method succeeded in segmenting the optic cup on color retinal fundus images.


Sign in / Sign up

Export Citation Format

Share Document