fundus image
Recently Published Documents


TOTAL DOCUMENTS

522
(FIVE YEARS 241)

H-INDEX

23
(FIVE YEARS 7)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Yeonwoo Jeong ◽  
Yu-Jin Hong ◽  
Jae-Ho Han

Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to analyze retinal images and build frameworks based on analysis for the identification of retinopathy and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning techniques applied to the retinal vasculature extraction from the fundus image are covered. The challenges in developing these systems are also discussed.


Author(s):  
V. V. Starovoitov ◽  
Y. I. Golub ◽  
M. M. Lukashevich

Diabetic retinopathy (DR) is a disease caused by complications of diabetes. It starts asymptomatically and can end in blindness. To detect it, doctors use special fundus cameras that allow them to register images of the retina in the visible range of the spectrum. On these images one can see features, which determine the presence of DR and its grade. Researchers around the world are developing systems for the automated analysis of fundus images. At present, the level of accuracy of classification of diseases caused by DR by systems based on machine learning is comparable to the level of qualified medical doctors.The article shows variants for representation of the retina in digital images by different cameras. We define the task to develop a universal approach for the image quality assessment of a retinal image obtained by an arbitrary fundus camera. It is solved in the first block of any automated retinal image analysis system. The quality assessment procedure is carried out in several stages. At the first stage, it is necessary to perform binarization of the original image and build a retinal mask. Such a mask is individual for each image, even among the images recorded by one camera. For this, a new universal retinal image binarization algorithm is proposed. By analyzing result of the binarization, it is possible to identify and remove imagesoutliers, which show not the retina, but other objects. Further, the problem of no-reference image quality assessment is solved and images are classified into two classes: satisfactory and unsatisfactory for analysis. Contrast, sharpness and possibility of segmentation of the vascular system on the retinal image are evaluated step by step. It is shown that the problem of no-reference image quality assessment of an arbitrary fundus image can be solved.Experiments were performed on a variety of images from the available retinal image databases.


2022 ◽  
Author(s):  
Imane Mehidi ◽  
Djamel Eddine Chouaib Belkhiat ◽  
Dalel Jabri

Abstract The main purpose of identifying and locating the vessels of the retina is to specify the various tissues from the vascular structure of the retina (which could be differencied between wide or tight) of the background of the fundus image. There exist several segmentation techniques that are spreading to divide the retinal vessels, depending on the issues and complexity of the retinal images. Fuzzy c-means is one of the most often used algorithms for retinal image segmentation due to its effectiveness and speed. This paper analyzes the performance of improved FCM algorithms for retinal image segmentation in terms of their ability and capability in segmenting and isolating blood vessels. The process we followed in our paper consists of two phases. Firstly, the pre-processing phase, where the green channel is taken for the color image of the retina. Contrast enhancement is performed through CLAHE , proceeded by applying bottom-hat filtering to bottom-hat filtering is applied with the purpose to define the region of interest. Secondly, in the segmentation phase the obtained image is segmented using FCM algorithms. The algorithms chosen for this study are: FCM, EnFCM, SFCM, FGFCM, FRFCM, DSFCM_N, FCM_SICM and, SSFCM performed on DRIVE and STARE databases. Experiments accomplished on DRIVE and STARE databases demonstrate that the DSFCM_N algorithm achieves better results on the DRIVE database, whereas the FGFCM algorithm provides better results on the STARE database in term of accuracy. Concerning time consumption. The FRFCM algorithm requires less time than other algorithms in the segmentation of retinal images.


2022 ◽  
Vol 71 ◽  
pp. 103208
Author(s):  
Aditya Raj ◽  
Nisarg A. Shah ◽  
Anil Kumar Tiwari

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Radifa Paradisa ◽  
Alhadi Bustamam ◽  
Wibowo Mangunwardoyo ◽  
Andi Victor ◽  
Anggun Yudantha ◽  
...  

Fundus image is an image that captures the back of the eye (retina), which plays an important role in the detection of a disease, including diabetic retinopathy (DR). It is the most common complication in diabetics that remains an important cause of visual impairment, especially in the young and economically active age group. In patients with DR, early diagnosis can effectively help prevent the risk of vision loss. DR screening was performed by an ophthalmologist by analysing the lesions on the fundus image. However, the increasing prevalence of DR is not proportional to the availability of ophthalmologists who can read fundus images. It can lead to delayed prevention and management of DR. Therefore, there is a need for an automated diagnostic system as it can help ophthalmologists increase the efficiency of the diagnostic process. This paper provides a deep learning approach with the concatenate model for fundus image classification with three classes: no DR, non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR). The model architecture used is DenseNet121 and Inception-ResNetV2. The feature extraction results from the two models are combined and classified using the multilayer perceptron (MLP) method. The method that we propose gives an improvement compared to a single model with the results of accuracy, and average precision and recall of 91% and 90% for the F1-score, respectively. This experiment demonstrates that our proposed deep-learning approach is effective for the automatic DR classification using fundus photo data.


2021 ◽  
Author(s):  
U. Savitha ◽  
Kodali Lahari Chandana ◽  
A. Cathrin Sagayam ◽  
S. Bhuvaneswari

Different eye disease has clinical use in defining of the actual status of eye, in the outcome of the medication and other alternatives in the curative phase. Mainly simplicity, clinical nature are the most important requirements for any classification system. In the existing they used different machine learning techniques to detect only single disease. Whereas deep learning system, which is named as Convolutional neural networks (CNNs) can show hierarchical representing of images between disease eye and normal eye pattern.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1222
Author(s):  
Aziah Ali ◽  
Aini Hussain ◽  
Wan Mimi Diyana Wan Zaki ◽  
Wan Haslina Wan Abdul Halim ◽  
Wan Noorshahida Mohd Isa ◽  
...  

Background: By diagnosing using fundus images, ophthalmologists can possibly detect symptoms of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and retinal detachment. A number of studies have also found some links between fundus image analysis data and other underlying systemic diseases such as cardiovascular diseases, including hypertension and kidney dysfunction. Now that imaging technology is advancing further, more fundus cameras are currently equipped with the capability to produce high resolution fundus images. One of the public databases for high-resolution fundus images called High-Resolution Fundus (HRF) is consistently used for validating vessel segmentation algorithms. However, it is noticed that the segmentation outputs from the HRF database normally include noisy pixels near the upper and lower edges of the image. In this study, we propose an enhanced method of pre-processing the images so that these noisy pixels can be eliminated, and thus the overall segmentation performance can be increased. Without eliminating the noisy pixels, the visual segmentation output shows a large number of false positive pixels near the top and bottom edges. Methods: The proposed method involves adding additional padding to the image before the segmentation procedure is applied. In this study, the Bar-Combination Of Shifted FIlter REsponses (B-COSFIRE) filter is used for retinal vessel segmentation. Results: Qualitative assessment of the segmentation results when using the proposed method showed improvement in terms of noisy pixel removal from near the edges. Quantitatively, the additional padding step improves all considered metrics for vessel segmentation, namely Sensitivity (73.76%), Specificity (97.53%), and Matthew’s Correlation Coefficient (MCC) value (71.57%) for the HRF database. Conclusions: Findings from this study indicate improvement in the overall segmentation performance when using the proposed double-padding method of pre-processing the fundus image prior to segmentation. In the future, more databases with various resolutions and modalities can be included for further validation.


Sign in / Sign up

Export Citation Format

Share Document