optic cup
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 99)

H-INDEX

30
(FIVE YEARS 5)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 434
Author(s):  
Marriam Nawaz ◽  
Tahira Nazir ◽  
Ali Javed ◽  
Usman Tariq ◽  
Hwan-Seung Yong ◽  
...  

Glaucoma is an eye disease initiated due to excessive intraocular pressure inside it and caused complete sightlessness at its progressed stage. Whereas timely glaucoma screening-based treatment can save the patient from complete vision loss. Accurate screening procedures are dependent on the availability of human experts who performs the manual analysis of retinal samples to identify the glaucomatous-affected regions. However, due to complex glaucoma screening procedures and shortage of human resources, we often face delays which can increase the vision loss ratio around the globe. To cope with the challenges of manual systems, there is an urgent demand for designing an effective automated framework that can accurately identify the Optic Disc (OD) and Optic Cup (OC) lesions at the earliest stage. Efficient and effective identification and classification of glaucomatous regions is a complicated job due to the wide variations in the mass, shade, orientation, and shapes of lesions. Furthermore, the extensive similarity between the lesion and eye color further complicates the classification process. To overcome the aforementioned challenges, we have presented a Deep Learning (DL)-based approach namely EfficientDet-D0 with EfficientNet-B0 as the backbone. The presented framework comprises three steps for glaucoma localization and classification. Initially, the deep features from the suspected samples are computed with the EfficientNet-B0 feature extractor. Then, the Bi-directional Feature Pyramid Network (BiFPN) module of EfficientDet-D0 takes the computed features from the EfficientNet-B0 and performs the top-down and bottom-up keypoints fusion several times. In the last step, the resultant localized area containing glaucoma lesion with associated class is predicted. We have confirmed the robustness of our work by evaluating it on a challenging dataset namely an online retinal fundus image database for glaucoma analysis (ORIGA). Furthermore, we have performed cross-dataset validation on the High-Resolution Fundus (HRF), and Retinal Image database for Optic Nerve Evaluation (RIM ONE DL) datasets to show the generalization ability of our work. Both the numeric and visual evaluations confirm that EfficientDet-D0 outperforms the newest frameworks and is more proficient in glaucoma classification.


Author(s):  
Macaulie A Casey ◽  
Jonathon T Hill ◽  
Kazuyuki Hoshijima ◽  
Chase D Bryan ◽  
Suzanna L Gribble ◽  
...  

Abstract Morphogenesis, the formation of three-dimensional organ structures, requires precise coupling of genetic regulation and complex cell behaviors. The genetic networks governing many morphogenetic systems, including that of the embryonic eye, are poorly understood. In zebrafish, several forward genetic screens have sought to identify factors regulating eye development. These screens often look for eye defects at stages after the optic cup is formed and when retinal neurogenesis is under way. This approach can make it difficult to identify mutants specific for morphogenesis, as opposed to neurogenesis. To this end, we carried out a forward genetic, small-scale haploid mutagenesis screen in zebrafish (Danio rerio) to identify factors that govern optic cup morphogenesis. We screened ∼100 genomes and isolated shutdown corner (sco), a mutant which exhibits multiple tissue defects and harbors a ∼10 Mb deletion that encompasses 89 annotated genes. Using a combination of live imaging and antibody staining, we found cell proliferation, cell death, and tissue patterning defects in the sco optic cup. We also observed other phenotypes, including paralysis, neuromuscular defects, and ocular vasculature defects. To date, the largest deletion mutants reported in zebrafish are engineered using CRISPR-Cas9 and are less than 300 kb. Because of the number of genes within the deletion interval, shutdown corner (Df(Chr05:sco)z207) could be a useful resource to the zebrafish community, as it may be helpful for gene mapping, understanding genetic interactions, or for study of the many genes lost in the mutant.


2021 ◽  
Author(s):  
Tales H. Carvalho ◽  
Carlos H. Moraes ◽  
Rafael C. Almeida ◽  
Danilo H. Spadoti

2021 ◽  
pp. 479-489
Author(s):  
Arindam Chowdhury ◽  
Rohit Agarwal ◽  
Alloy Das ◽  
Debashis Nandi

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nishtha Ranawat ◽  
Ichiro Masai

Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012005
Author(s):  
F. G. Mohammed ◽  
S.D. Athab ◽  
S. G. Mohammed

Abstract Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma disease with 70% percentage; moreover, when the dimensions of both Optic Disc(OD) and Optic Cup(OC) were used as additional features the accuracy rate raised to 91%.


2021 ◽  
pp. 40-48
Author(s):  
Ke Zhou ◽  
Yufei Zhan ◽  
Zhe Si ◽  
Yang Liu ◽  
Dongmei Fu

2021 ◽  
Vol 127 (13) ◽  
Author(s):  
Jeong-Ho Lee ◽  
Harold S. Park ◽  
Douglas P. Holmes

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tania Moreno-Mármol ◽  
Mario Ledesma-Terrón ◽  
Noemi Tabanera ◽  
Maria Jesús Martin-Bermejo ◽  
Marcos J Cardozo ◽  
...  

The vertebrate eye-primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup-shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.


Sign in / Sign up

Export Citation Format

Share Document