Hamiltonian Structure and Conservation Laws of Three-Dimensional Linear Elasticity Theory

Author(s):  
D. O. Bykov ◽  
V. N. Grebenev ◽  
S. B. Medvedev
1993 ◽  
Vol 48 (10) ◽  
pp. 6999-7002 ◽  
Author(s):  
Wenge Yang ◽  
Renhui Wang ◽  
Di-hua Ding ◽  
Chengzheng Hu

Soft Matter ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 1179-1189 ◽  
Author(s):  
Timur R. Galimzyanov ◽  
Pavel V. Bashkirov ◽  
Paul S. Blank ◽  
Joshua Zimmerberg ◽  
Oleg V. Batishchev ◽  
...  

The linear theory of elasticity can be expanded through the range from weak to strong bilayer membrane deformations using a generalized Helfrich model based on monolayer membrane additivity.


Author(s):  
Shaofan Li ◽  
Anurag Gupta ◽  
Xanthippi Markenscoff

In this paper, we present new conservation laws of linear elasticity which have been discovered. These newly discovered conservation laws are expressed solely in terms of the Cauchy stress tensor, and they are genuine, non–trivial conservation laws that are intrinsically different from the displacement conservation laws previously known. They represent the variational symmetry conditions of combined Beltrami–Michell compatibility equations and the equilibrium equations. To derive these conservation laws, Noether's theorem is extended to partial differential equations of a tensorial field with general boundary conditions. By applying the tensorial version of Noether's theorem to Pobedrja's stress formulation of three–dimensional elasticity, a class of new conservation laws in terms of stresses has been obtained.


1987 ◽  
Vol 35 (16) ◽  
pp. 8609-8620 ◽  
Author(s):  
Piali De ◽  
Robert A. Pelcovits

2005 ◽  
Vol 50 (10) ◽  
pp. 535-538 ◽  
Author(s):  
G. V. Kostin ◽  
V. V. Saurin

2021 ◽  
Vol 6 (10) ◽  
pp. 10449-10465
Author(s):  
Ricardo Abreu Blaya ◽  
◽  
J. A. Mendez-Bermudez ◽  
Arsenio Moreno García ◽  
José M. Sigarreta ◽  
...  

<abstract><p>The aim of this paper is to establish a representation formula for the solutions of the Lamé-Navier system in linear elasticity theory. We also study boundary value problems for such a system in a bounded domain $ \Omega\subset {\mathbb R}^3 $, allowing a very general geometric behavior of its boundary. Our method exploits the connections between this system and some classes of second order partial differential equations arising in Clifford analysis.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document