scholarly journals Boundary value problems for the Lamé-Navier system in fractal domains

2021 ◽  
Vol 6 (10) ◽  
pp. 10449-10465
Author(s):  
Ricardo Abreu Blaya ◽  
◽  
J. A. Mendez-Bermudez ◽  
Arsenio Moreno García ◽  
José M. Sigarreta ◽  
...  

<abstract><p>The aim of this paper is to establish a representation formula for the solutions of the Lamé-Navier system in linear elasticity theory. We also study boundary value problems for such a system in a bounded domain $ \Omega\subset {\mathbb R}^3 $, allowing a very general geometric behavior of its boundary. Our method exploits the connections between this system and some classes of second order partial differential equations arising in Clifford analysis.</p></abstract>

1950 ◽  
Vol 17 (4) ◽  
pp. 377-380
Author(s):  
R. D. Mindlin ◽  
L. E. Goodman

Abstract A procedure is described for extending the method of separation of variables to the solution of beam-vibration problems with time-dependent boundary conditions. The procedure is applicable to a wide variety of time-dependent boundary-value problems in systems governed by linear partial differential equations.


Sign in / Sign up

Export Citation Format

Share Document