Numerical Analysis of Buried Pipelines Located in Slopes

2021 ◽  
pp. 121-131
Author(s):  
Rishi Ranjan ◽  
Anil Kumar Choudhary ◽  
Awdhesh Kumar Choudhary
2021 ◽  
Vol 15 (2) ◽  
pp. 54-62
Author(s):  
Dyaa Hassan

Purpose. This research presents experimental modeling and numerical analysis on reducing stress and protecting buried pipelines using three arrangements techniques of expanded polystyrene (EPS) geofoam blocks: embankment, EPS block embracing the upper part of the pipe and EPS blocks as two posts and a beam. Methods. An experimental model consisted of steel tank with boundaries dimensions depending on the diameter of the pipe located at the center of it. The backfill on the pipe was made from sand and embedded EPS blocks with two techniques: EPS block embracing the upper part of the pipe and EPS blocks form two posts and a beam. Series of experiments were carried out using static loading on rigid steel plate to measure the pipe deformations and strains, as well as backfill surface displacement. The numerical analysis was used to simulate the experimental model using the finite element software program PLAXIS-3D. Findings. The results reveal that the most effective method which prevents stress on the buried flexible pipe was EPS post and beam system followed by EPS embracing the upper part of the pipe. The results obtained from the numerical analysis and the experiment demonstrate the same trend. The parametric study shows that EPS post and beam blocks model has higher surface displacement than embracing the upper part of the pipe model, which is more effective in case of high rigidity of the pipe. Originality. Reducing stress on buried pipes using different geofoam shapes to find which one is the optimum method. Practical implications. Two configurations of EPS geofoam blocks – EPS block embracing the upper part of the pipe and EPS blocks post and beam system - ensure successful stress reduction and protect buried pipes


2011 ◽  
Vol 14 ◽  
pp. 3260-3267 ◽  
Author(s):  
M. Saberi ◽  
H. Arabzadeh ◽  
A. Keshavarz

Author(s):  
Suvra Chakraborty ◽  
Vandad Talimi ◽  
Mohammad Haghighi ◽  
Yuri Muzychka ◽  
Rodney McAffee

Modeling of heat loss from offshore buried pipelines is one of the prime concerns for Oil and Gas industries. Offshore Oil and Gas production and thermal modeling of buried pipelines in arctic regions are challenging tasks due to environmental conditions and hazards. Flow properties of Oil and Gas flowing through the pipelines in arctic regions are also affected due to freezing around pipelines. Solid formation in the production path can have serious implications on production. Heavy components of crude oil start to precipitate as wax crystal when the fluid temperature drops. Gas hydrates also form when natural gas combines with free water at high pressure and low temperature. Pipeline burial and trenching in some offshore developments are now one of the prime methods to avoid ice gouge, ice cover, icebergs, and other threats. Long pipelines require more thermal management to deliver production to the sea surface. Significant heat loss may occur from offshore buried pipelines in the forms of heat conduction and natural convection through the seabed. The later can become more prominent where the backfill soil is loose or sandy. The aim of this paper is to provide an insight of modeling and conducting the experiments using different parameters with numerical analysis results support to investigate the heat loss from offshore buried pipelines. This paper also provides validation of the outputs from benchmark tests with analytical models available for theoretical shape factor at constant temperature and constant heat flux boundary conditions. These theoretical models have limitations such as the assumption of uniform soil properties around the buried pipeline, isothermal outer surface of the buried pipeline and soil surface. Degree of saturation of surrounding medium can play a significant role in the thermal behavior of fluid travelling through the backfill soil. This paper presents several steady states and transient response analysis describing some influential geotechnical parameters along with test procedures and numerical simulations using CFD to model the heat loss for different parameters such as burial depth, backfill soil, trench geometries etc. This paper also shows the transient response for several shutdown (cooldown) tests performed in the saturated sand medium. The statistical and uncertainty analysis performed from the experimental outputs also ensure the legitimacy of the experimental model. The outcomes of this research will provide valuable experimental data and numerical predictions for offshore pipeline design, heat loss from buried pipelines in offshore conditions, and efficient model to mitigate the flow assurance issues e.g. wax and hydrates.


Sign in / Sign up

Export Citation Format

Share Document