Mapping 30-m Resolution Land Cover of China Based on Full Convolutional Neural Network

Author(s):  
Yinhe Liu ◽  
Yanfei Zhong
Author(s):  
Naftaly Wambugu ◽  
Yiping Chen ◽  
Zhenlong Xiao ◽  
Mingqiang Wei ◽  
Saifullahi Aminu Bello ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


2019 ◽  
Vol 11 (9) ◽  
pp. 1006 ◽  
Author(s):  
Quanlong Feng ◽  
Jianyu Yang ◽  
Dehai Zhu ◽  
Jiantao Liu ◽  
Hao Guo ◽  
...  

Coastal land cover classification is a significant yet challenging task in remote sensing because of the complex and fragmented nature of coastal landscapes. However, availability of multitemporal and multisensor remote sensing data provides opportunities to improve classification accuracy. Meanwhile, rapid development of deep learning has achieved astonishing results in computer vision tasks and has also been a popular topic in the field of remote sensing. Nevertheless, designing an effective and concise deep learning model for coastal land cover classification remains problematic. To tackle this issue, we propose a multibranch convolutional neural network (MBCNN) for the fusion of multitemporal and multisensor Sentinel data to improve coastal land cover classification accuracy. The proposed model leverages a series of deformable convolutional neural networks to extract representative features from a single-source dataset. Extracted features are aggregated through an adaptive feature fusion module to predict final land cover categories. Experimental results indicate that the proposed MBCNN shows good performance, with an overall accuracy of 93.78% and a Kappa coefficient of 0.9297. Inclusion of multitemporal data improves accuracy by an average of 6.85%, while multisensor data contributes to 3.24% of accuracy increase. Additionally, the featured fusion module in this study also increases accuracy by about 2% when compared with the feature-stacking method. Results demonstrate that the proposed method can effectively mine and fuse multitemporal and multisource Sentinel data, which improves coastal land cover classification accuracy.


Sign in / Sign up

Export Citation Format

Share Document