sar data
Recently Published Documents


TOTAL DOCUMENTS

3295
(FIVE YEARS 739)

H-INDEX

77
(FIVE YEARS 12)

Author(s):  
Asset A. Akhmadiya ◽  
Khuralay Moldamurat ◽  
Mo Jamshidi ◽  
Saule Brimzhanova ◽  
Nabi Nabiyev ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 580
Author(s):  
Emna Ayari ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
Nicolas Baghdadi ◽  
Mehrez Zribi

The objective of this paper was to estimate soil moisture in pepper crops with drip irrigation in a semi-arid area in the center of Tunisia using synthetic aperture radar (SAR) data. Within this context, the sensitivity of L-band (ALOS-2) in horizontal-horizontal (HH) and horizontal-vertical (HV) polarizations and C-band (Sentinel-1) data in vertical-vertical (VV) and vertical-horizontal (VH) polarizations is examined as a function of soil moisture and vegetation properties using statistical correlations. SAR signals scattered by pepper-covered fields are simulated with a modified version of the water cloud model using L-HH and C-VV data. In spatially heterogeneous soil moisture cases, the total backscattering is the sum of the bare soil contribution weighted by the proportion of bare soil (one-cover fraction) and the vegetation fraction cover contribution. The vegetation fraction contribution is calculated as the volume scattering contribution of the vegetation and underlying soil components attenuated by the vegetation cover. The underlying soil is divided into irrigated and non-irrigated parts owing to the presence of drip irrigation, thus generating different levels of moisture underneath vegetation. Based on signal sensitivity results, the potential of L-HH data to retrieve soil moisture is demonstrated. L-HV data exhibit a higher potential to retrieve vegetation properties regarding a lower potential for soil moisture estimation. After calibration and validation of the proposed model, various simulations are performed to assess the model behavior patterns under different conditions of soil moisture and pepper biophysical properties. The results highlight the potential of the proposed model to simulate a radar signal over heterogeneous soil moisture fields using L-HH and C-VV data.


2022 ◽  
Vol 14 (1) ◽  
pp. 240
Author(s):  
Yihao Wu ◽  
Jia Huang ◽  
Xiufeng He ◽  
Zhicai Luo ◽  
Haihong Wang

MDT recovery over coastal regions is challenging, as the mean sea surface (MSS) and geoid/quasi-geoid models are of low quality. The altimetry satellites equipped with the synthetic aperture radar (SAR) altimeters provide more accurate sea surface heights than traditional ones close to the coast. We investigate the role of using the SAR-based MSS in coastal MDT recovery, and the effects introduced by the SAR altimetry data are quantified and assessed. We model MDTs based on the multivariate objective analysis, where the MSS and the recently released satellite-only global geopotential model are combined. The numerical experiments over the coast of Japan and southeastern China show that the use of the SAR-based MSS improves the local MDT. The root mean square (RMS) of the misfits between MDT-modeled with SAR altimetry data and the ocean data is lower than that derived from MDT computed without SAR data—by a magnitude of 4–8 mm. Moreover, the geostrophic velocities derived from MDT modeled with the SAR altimetry data have better fits with buoy data than those derived from MDT modeled without SAR data. In total, our studies highlight the use of SAR altimetry data in coastal MDT recovery.


2022 ◽  
Vol 88 (1) ◽  
pp. 17-28
Author(s):  
Qing Ding ◽  
Zhenfeng Shao ◽  
Xiao Huang ◽  
Orhan Altan ◽  
Yewen Fan

Taking the Futian District as the research area, this study proposed an effective urban land cover mapping framework fusing optical and SAR data. To simplify the model complexity and improve the mapping results, various feature selection methods were compared and evaluated. The results showed that feature selection can eliminate irrelevant features, increase the mean correlation between features slightly, and improve the classification accuracy and computational efficiency significantly. The recursive feature elimination-support vector machine (RFE-SVM) model obtained the best results, with an overall accuracy of 89.17% and a kappa coefficient of 0.8695, respectively. In addition, this study proved that the fusion of optical and SAR data can effectively improve mapping and reduce the confusion between different land covers. The novelty of this study is with the insight into the merits of multi-source data fusion and feature selection in the land cover mapping process over complex urban environments, and to evaluate the performance differences between different feature selection methods.


Author(s):  
Zi-Xuan Zhou ◽  
Yunkai Deng ◽  
Wei Wang ◽  
Xiaoxue Jia ◽  
Robert Wang
Keyword(s):  

2022 ◽  
Author(s):  
J P Dudley ◽  
S V Samsonov

The RADARSAT Constellation Mission (RCM) is Canada's latest system of C-band Synthetic Aperture Radar (SAR) Earth observation satellites. The system of three satellites, spaced equally in a common orbit, allows for a rapid four-day repeat interval. The RCM has been designed with a selection of stripmap, spotlight, and ScanSAR beam modes which offer varied combinations of spatial resolution and coverage. Using Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, the growing archive of SAR data gathered by RCM can be used for change detection and ground deformation monitoring for diverse applications in Canada and around the world. In partnership with the Canadian Space Agency (CSA), the Canada Centre for Mapping and Earth Observation (CCMEO) has developed an automated system for generating standard and advanced deformation products and change detection from SAR data acquired by RCM and RADARSAT-2 satellites using DInSAR processing methodology. Using this system, this paper investigates four key interferometric properties of the RCM system which were not available on the RADARSAT-1 or RADARSAT-2 missions: The impact of the high temporal resolution of the four-day repeat cycle of the RCM on temporal decorrelation trends is tested and fitted against simple temporal decay models. The effect of the normalization and the precision of the radiometric calibration on interferometric spatial coherence is investigated. The performance of the RCM ScanSAR mode for wide area interferometric analysis is tested. The performance of the novel RCM Compact-polarization (CP) mode for interferometric analysis is also investigated.


2022 ◽  
Vol 25 ◽  
pp. 100674
Author(s):  
Diogo Santos ◽  
Sandra Fernández-Fernández ◽  
Tiago Abreu ◽  
Paulo A. Silva ◽  
Paulo Baptista
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document