One-Dimensional Model for Sediment Transport: An Application to the Design of Silt Basins

Author(s):  
Álvaro A. Aldama ◽  
Adalberto Vaca ◽  
Dunia González-Zeas ◽  
Xavier Coello-Rubio ◽  
Gustavo Luzuriaga
2016 ◽  
Vol 64 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Mohamed Gharbi ◽  
Amel Soualmia ◽  
Denis Dartus ◽  
Lucien Masbernat

Abstract In Tunisia especially in the Medjerda watershed the recurring of floods becoming more remarkable. In order to limit this risk, several studies were performed to examine the Medjerda hydrodynamic. The analysis of results showed that the recurrences of floods at the Medjerda watershed is strongly related to the sediment transport phenomena. Initially, a one dimensional modelling was conducted in order to determine the sediment transport rate, and to visualize the river morphological changes during major floods. In continuity of this work, we will consider a two-dimensional model for predicting the amounts of materials transported by the Medjerda River. The goal is to visualize the Medjerda behaviour during extreme events and morphological changes occurred following the passage of the spectacular flood of January 2003. As a conclusion for this study, a comparative analysis was performed between 1D and 2D models results. The objective of these comparisons is to visualize the benefits and limitations of tested models. The analysis of the results demonstrate that 2D model is able to calculate the flow variation, sediment transport rates, and river morphological changes during extreme events for complicated natural domains with high accuracy comparing with 1D Model.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


1992 ◽  
Vol 25 (10) ◽  
pp. 2889-2896 ◽  
Author(s):  
R D Gianotti ◽  
M J Grimson ◽  
M Silbert

Sign in / Sign up

Export Citation Format

Share Document