cylindrical charge
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

7
(FIVE YEARS 1)

Geophysics ◽  
2022 ◽  
pp. 1-60
Author(s):  
Qian Xu ◽  
Zhong-Qi Wang ◽  
Wengong Han ◽  
Chenglong Yu

The amplitude-frequency characteristic of a seismic wave excited by explosion sources directly affects the accuracy of seismic exploration. To reveal the effect law related to a cylindrical charge, the research proposes a seismic wavefield model excited by a long cylindrical charge. According to the characteristics of the blasting cavity generated by a finite length cylindrical charge, the seismic wavefield characteristics of a cylindrical charge excitation is obtained by superposing the seismic wavefield excited by a series of spherical charges. Numerical simulation results show that the calculation error of the blasting cavity characteristics of the theoretical model is within 10%. The comparison with field experimental results shows that the error of the model is within 9.4%. The velocity field of the excited seismic wave is almost the same as that of the spherical charge when the explosion distance to the cylindrical charge with finite length is 16-21 times longer than the charge length, but the frequency of the seismic wave is 30% higher than for a spherical charge. Moreover, the explosive velocity has a certain influence on the amplitude-frequency characteristic of the seismic wave excited by the cylindrical charge. The established theoretical model can accurately describe the amplitude-frequency characteristics of the seismic wavefield excited by a cylindrical charge with finite length.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lin Wang ◽  
Haojiang Wan ◽  
Yazhou Chen

The calculation of electric field in space excited by thunderclouds is an important basis for lightning warning and protection. In numerical calculation of the electromagnetic field, it is often necessary to perform multiple loop nesting calculations on several triple integrals, which consume a lot of computing resources. In order to shorten the calculation time and improve the calculation efficiency, the electric field excited by the charged thunderclouds in space is theoretically derived with the analytical method by the thundercloud cylindrical charge pile model and based on the electrostatic field theory. The complex integrand function is approximated, so that the analytic expression of electric field in space is obtained in this paper. Through simulation and comparison, it is found that the approximate solution and the exact solution are similar in size, the change trend is the same, and the approximate analytical expression can be used for the approximate calculation of the electric field in a short range. Under certain conditions, the approximate solution can be converted into an accurate solution, which can be used for the accurate calculation of the electric field. Approximate calculation not only simplifies theoretical derivation but also improves calculation efficiency. The calculation time has been shortened from tens of hours to less than one second by using different calculation methods, which is a difference of 7 orders of magnitude. With approximate analytical expression, the electric field excited by charge pile with typical structures in thunderclouds in space is calculated and the characteristics of that are analyzed in this paper. For lightning protection of mobile targets, approximate calculation is of great significance in shortening the lightning warning time and enhancing the protection effect.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xiaohua Zhao ◽  
Gaohui Wang ◽  
Hongyuan Fang ◽  
Yong Fan ◽  
Xueming Du

Antiknock research of reinforced concrete (RC) slabs is often carried out with spherical or nearly spherical explosives, although many explosives used in engineering and military are cylinder shaped. It is known that the shock wave caused by cylindrical explosives varies in different directions, which is quite different from the spherical charge. In this paper, the shock wave propagation characteristics of spherical and cylindrical explosives with different aspect ratios are compared and analyzed. The 2D numerical results show the peak overpressure from the cylindrical explosive is significantly affected by the L/D (length/diameter) ratio. Subsequently, the damage features of RC slabs under spherical and cylindrical explosives with a certain L/D ratio are investigated through an explosion experiment. Finally, the influence of the L/D ratio on the dynamic response of RC slabs under cylindrical explosives is studied by the fully coupled Euler–Lagrange method. The accuracy and reliability of the coupled model are verified by comparing the numerical with experimental results. Based on the experimental and numerical studies, it can be concluded that the explosive shape directly determines the shape of upper surface crater damage, and the spall damage area of RC slabs becomes larger as the L/D increases. For the L/D increases to a certain value, the cylindrical explosive will induce larger spall damage than that induced by spherical charge with the same amount of explosives. Hence, the effect of the cylindrical charge should be considered in the antiknock design of the RC structure.


2021 ◽  
Vol 38 ◽  
pp. 154-160
Author(s):  
Juan Gu ◽  
Xin Wang ◽  
Zhiyong Qin ◽  
Chong Ji ◽  
Changxiao Zhao

2021 ◽  
Vol 347 ◽  
pp. 00038
Author(s):  
Mujtaba M. Shuaib ◽  
Steeve Chung Kim Yuen ◽  
Gerald N. Nurick

This paper reports on the results of a numerical study to simulate the response of carbon fibre reinforced polymer (CFRP) retrofitted steel plates to applied blast loads using finite element software, LS-DYNA. The results of the simulation were validated against plate response and magnitude of deformation obtained from previous experiments. The uniform blast load was generated in the experiment by detonating a cylindrical charge down the end of a square tube. The finite element code LS-DYNA was used to simulate the structural response of the respective blast structures. For the numerical model, the blast load was simulated using the mapping feature available in LS-DYNA for the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) elements which significantly reduced the size of the air domain in the model. The simulations showed a satisfactory correlation with the experiments for the blast results and post-failure deformations that occurred in CFRP retrofitted steel plates.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Qidong Gao ◽  
Zhendong Leng ◽  
Ruipeng Yang ◽  
Yaqiong Wang ◽  
Ming Chen ◽  
...  

The outcome of bench blasting significantly affects the downstream operations in mining. In bench blasting, the explosives charged in blastholes are generally cylindrically shaped and fired by the in-hole detonator. As the detonator determines the propagation of the detonation wave in the cylindrical charge, the effect of detonator location can never be ignored. In this paper, the mathematics and mechanics of the effect of detonator location was analyzed from the view of the distribution of explosion energy and blast stress field of a cylindrical charge. Then, a field blasting experiment and two numerical simulations were conducted to further display its effect on blasting outcomes. At last, the appearance of oversize boulders and rock toes in bench blasting was discussed, and an improved scheme of the detonator location was proposed to cope with these problems. Results indicate that the in-hole detonator has the capacity of adjusting the spatial distribution of explosion energy and blast stress field in the surrounding rock mass. The traditional recommendation of the bottom detonator is not always right. The optimized detonator location in bench blasting is available by properly combining the merits of traditional detonator locations. This study is of interest to improve the efficiency and reduce the cost of mining.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Qidong Gao ◽  
Wenbo Lu ◽  
Zhendong Leng ◽  
Zhaowei Yang ◽  
Yuzhu Zhang ◽  
...  

In drill and blast, the explosive filled in each blasthole is cylindrically shaped and generally initiated by the detonator. Thus, the effect of the initiation location must be addressed, as it determines the detonation direction along the entire column explosive. In this paper, the effect of the initiation location on blast vibration field and its acting mechanism were comprehensively investigated through the theoretical, computational, and experimental approaches. The results indicate that the initiation location plays an important role in the blast vibration filed of the cylindrical charge. The underlying effect of the initiation location can be regarded as the combined results of the energy distribution and phase delay effects of the column explosive source. The behavior of the rock mass in the single-hole blasting experiment demonstrates that the explosion energy is preferentially transmitted to the forward direction of the detonation wave. The seed wave-based computation model verifies that owing to the phase delay effect, the blast vibration field of the cylindrical charge is not uniformly distributed and is strengthened at the forward direction of the detonation wave. The production blasting experiment indicates that the ground PPV under bottom initiation is 61.3%∼211.7% larger than that under top initiation. In addition, the effect of the initiation location is sensitive to the charge length L and the denotation velocity D. Meanwhile, the effect of the initiation location vanishes with distance. The present study provides valuable reference for understanding the effect of the initiation location on blast vibration in drill and blast.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongkang Wang ◽  
Xiaowei Gu ◽  
Wenlong Zhang ◽  
Qiankun Xie ◽  
Xiaochuan Xu ◽  
...  

The basic process of cut blasting is to break rock, throw fragments, and form a cavity. Based on the characteristics of cut blasting and the combined effect of stress waves and detonation gas, the evolution process of wedge cut blasting is divided into two stages, and a theoretical model is proposed to investigate the cavity formation mechanism by theoretical analysis and field tests. In phase one, rock breaking is caused by stress waves. By considering the dynamic strength of the rock, a computational model is built for the rock failure zone derived from the coupled cylindrical charge explosion. In phase two, the driving force of the detonation gas overcomes the total resistance of the surrounding rock mass, accelerates fragments, and then throws fragments to form a cavity. The criterion of cavity formation is established on the basis of the quasi-static loading of the detonation gas. The theoretical model provides an overall interpretation of the cavity formation mechanism, in which stress waves break rock and detonation gas throws fragments. A specific case indicates that the range of the failure zone is approximately 18 times the borehole radius in granite and that the hole-bottom spacing of the wedge cut can be designed as 50 cm; in addition, detonation gas is sufficient to overcome the total resistance, accelerate rock fragments, throw fragments, and form a cavity. Field tests present favourable blasting results, with a high utilization rate of boreholes and uniform fragment sizes. Therefore, the model could provide theoretical support and technical guidance for wedge cut blasting in hard rock.


Sign in / Sign up

Export Citation Format

Share Document