Influence of the Notch Length on the Optimal Radial Location of Strain Gage in a Single Edged Notched Plate

Author(s):  
Pranjol Paul ◽  
K. S. R. K. Murthy ◽  
Debabrata Chakraborty
2018 ◽  
Vol 172 ◽  
pp. 03002 ◽  
Author(s):  
Pranjol Paul ◽  
K.S.R. Krishna Murthy ◽  
Debabrata Chakraborty

A simple yet reliable and powerful methodology using only one strain gage has been recommended for appropriate determination of notch stress intensity factor (NSIF) for sharp V-notched configurations subjected to mode I condition. The methodology is supported by strong theoretical postulates, and it permits the gage to be pasted prominently apart from tip of the notch thus avoiding various problems associated with singularities. Unlike the conventional methodologies, the recommended strain gage methodology also proposes optimal radial strain gage locations which are beneficial in appropriate determination of NSIFs. A FEM based numerical approach is adopted for obtaining optimal radial gage locations a priori for the aforesaid configuration. The optimal radial gage locations are observed to be influenced by parameters viz. the notch angle, the ratio of notch length to width of the plate and also material properties. Results were already published by the authors to establish that the optimal radial gage locations are influenced by the notch angle and the ratio of notch length to width of the plate. In this conference paper, a case is studied with a completely different material to check whether material properties influence the graphical trends of results or not.


1989 ◽  
Vol 17 (3) ◽  
pp. 184-200 ◽  
Author(s):  
R. Hanada ◽  
T. Nagumo ◽  
T. Mashita

Abstract Automobile handling can be greatly improved by reducing the phase lag of tire cornering force behind imposed distortion. We have shown experimentally that this lag is related to in-plane stiffness of the belt and to radial, lateral, and circumferential stiffnesses of the sidewall. While the cornering stiffness is related to the belt rigidity, either can be changed without affecting the sidewall stiffnesses. The cornering stiffness, for example, is sensitive to design factors such as tread compound and tread pattern. The radial, lateral, and circumferential sidewall stiffnesses, however, are mutually perpendicular at a given point in a tire, so they cannot be changed independently of each other. In order to reduce the phase lag of the cornering force, the lateral and circumferential stiffnesses must be increased with a minimum increase in radial stiffness. This can be done by either lowering the radial location of the maximum section width of the inflated tire or by proper changes in material and/or design elements of the sidewall.


1996 ◽  
Vol 55 (1) ◽  
pp. 147-153 ◽  
Author(s):  
N.T. Younis ◽  
J. Mize
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document