Astronomical and Geophysical Factors of the Perturbed Chandler Wobble of the Earth Pole

Author(s):  
Sergej S. Krylov ◽  
Vadim V. Perepelkin ◽  
Alexandra S. Filippova
Keyword(s):  
2017 ◽  
Vol 62 (6) ◽  
pp. 318-322 ◽  
Author(s):  
Yu. G. Markov ◽  
V. V. Perepelkin ◽  
A. S. Filippova
Keyword(s):  

Author(s):  
William Lowrie

Two important physical laws determine the behaviour of the Earth as a planet and the relationship between the Sun and its planets: the law of conservation of energy and the law of conservation of angular momentum. ‘Planet Earth’ explains these laws along with the ‘Big Bang’ theory that describes the formation of the solar system: the Sun; the eight planets divided into the inner, terrestrial planets (Mercury, Venus, the Earth, and Mars) and the outer, giant planets (Jupiter, Saturn, Uranus, and Neptune); and the Trans-Neptunian objects that lie beyond Neptune. Kepler’s laws of planetary motion, the Chandler wobble, the effects of the Moon and Jupiter on the Earth’s rotation, and the Milankovitch cycles of climatic variation are also discussed.


2019 ◽  
Vol 1301 ◽  
pp. 012011
Author(s):  
L D Akulenko ◽  
V N Pochukaev ◽  
V V Perepelkin ◽  
A S Filippova

2000 ◽  
Vol 178 ◽  
pp. 455-462
Author(s):  
N.S. Sidorenkov

AbstractThe redistribution of air and water masses between the Pacific and Indian oceans during the El Niño/Southern oscillation (ENSO) changes the components of the Earth’s inertia tensor and shifts the position of the pole of the Earth’s rotation. The spectrum of the ENSO has components with periods of about 6, 3.6, 2.8, and 2.4 years. These periods are all the multiples of the Chandler period T = 1.2 yr. and the principal period of nutation 18.6 yr. A nonlinear model for the Chandler polar motion has been constructed based on this empirical fact. In this model, the ENSO excites the Chandler polar motion by acting on the Earth at the frequencies of combinative resonance. At the same time, the Chandler polar motion induces a polar tide in the atmosphere and the World Ocean, which orders the ENSO. As a result, the dominant components in the noise spectrum of the ENSO are those with the periods indicated above.


2019 ◽  
Vol 127 ◽  
pp. 03007
Author(s):  
Elena Blagoveshchenskaya ◽  
Evgenia Lyskova ◽  
Konstantin Sannikov

The problem of the correlation of the global dynamic phenomenon “Chandler wobble” with the local dynamics in different parts of the Earth’s crust and lithosphere is wide of the solution. In this study, an attempt was made to approach the solution by analyzing the temporal variations of local seismic activity in the restricted geospace volumes (GSV) within the uniform seismoactive regions. The driver of Chandler wobble is the deep mantle – the most hard and most massive Earth’s layer, whose large inertia tensor value is able to keep up Chandler’s specific rotation of the Earth for a long time. We use the geocentric coordinate system where daily rotation is absent. In this system Chandler wobble is very slow rotation of the Earth around the current equatorial axis (the pole of which is denoted as EP14). Probably, this slow rotation can influence on the seismic events in the GSV. This influence is proposed to determine by the some statistical parameter EP14gsv that indicates the most typical position EP14 on equator when the most part of the earthquakes have occurred in the given GSV. For some geospace volumes the distribution indicates certain longitudes, where the number of seismic events is maximal or minimal.


2015 ◽  
Vol 60 (12) ◽  
pp. 542-547
Author(s):  
Yu. G. Markov ◽  
S. S. Krylov ◽  
V. V. Perepelkin ◽  
A. S. Filippova
Keyword(s):  

2020 ◽  
Author(s):  
Yan Wai

<p><strong>Accounting for non-stationary effects in the model of the Earth’s pole motion</strong></p><p>Wai Yan Soe, Rumyantsev D.S., Perepelkin V.V.</p><p> </p><p>Nowadays the problem of constructing a model of the Earth pole motion is relevant both in theoretical and in applied aspects. The main difficulty of accurately describing the Earth pole motion is that it has non-stationary perturbations leading to the changes in both the average parameters of its motion and the motion as a whole.</p><p>The main process of the Earth pole coordinates fluctuations is the sum of the quasi periodic Chandler component and annual one. The approximation of the Earth pole motion is generally accepted to be a few parametric two-frequency model with constant coefficients. Relatively slow changes in the parameters of the Chandler and annual components make it possible to use this approximation in the time intervals of 6–7 years, that is, during the period of the Chandler and annual components modulation. This model has low algorithmic complexity and describes the main process of pole oscillations with acceptable accuracy.</p><p>However, due to the non-stationary perturbations there are effects in the Chandler and annual components that are not typical for a simple dynamical system that is described by linear differential equations with constant coefficients. Such changes can also be observed in the dissipative systems with not only with the amplitude variations but also when oscillation process is in steady-state condition [1].</p><p>In this work the effect of changing in the Earth pole oscillatory mode is revealed, which consists in a jump-like shift in the average frequency of the pole around the midpoint (the motion of the Earth pole midpoint is a pole trend of a long-period and secular nature), which leads to a change in the average speed of its motion.</p><p>A method is proposed to determine the moment when the average frequency is shifted, which is important for refining the forecast model of the Earth pole motion. Using this method a modified model of pole motion is developed and the dynamic effects in its motion are considered, caused by the change in the amplitudes ratio of the Chandler and annual harmonics.</p><p><strong>References</strong></p><p>[1] Barkin M.Yu., Krylov S.S., Perepelkin V.V. Modeling and analysis of the Earth pole motion with nonstationary perturbations. IOP Conf. Series: Journal of Physics: Conf. Series 1301 (2019) 012005; doi:10.1088/1742-6596/1301/1/012005</p><p> </p>


2017 ◽  
Vol 62 (4) ◽  
pp. 197-201
Author(s):  
Yu. G. Markov ◽  
V. V. Perepelkin ◽  
A. S. Filippova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document