conservation of energy
Recently Published Documents


TOTAL DOCUMENTS

1000
(FIVE YEARS 243)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
pp. 1-20
Author(s):  
Noah Stemeroff

Abstract Perspectival realists often appeal to the methodology of science to secure a realist account of the retention and continued success of scientific claims through the progress of science (e.g. Massimi, 2016). However, in the context of modern physics, the retention and continued success of scientific claims is typically only definable within a mathematical framework. In this paper, I argue that this concern leaves the perspectivist open to Cassirer’s (1910) neo-Kantian critique of the applicability of mathematics in the natural sciences. To support this criticism, I present a case study on the conservation of energy in modern physics.


Athenea ◽  
2022 ◽  
Vol 2 (6) ◽  
pp. 28-42
Author(s):  
Alberto Echegaray

This article presents an approach to the problem of ceramic types adhesion, applying energy and matter balance to the established control volume (cyclone) with the use of mathematical formulas that are interrelated to develop mathematical calculations and establish a new mathematical model The first results are obtained by operating the energy balance considering the collision of particles, using the principle of conservation of energy, the first law of thermodynamics, in order to obtain information that allows describing the phenomena of thermoplasticity and creep, in the formation of adhesions, from a physicochemical and kinetic point of view, which will serve as the basis for understanding their effect. As a result, an energy value of 660 kJ / mol was obtained, sufficient energy to start the transformation of the solid particles to a state of thermo-flow that allows the adhesion phenomenon to be started. Keywords: Adhesion, energy balance, cyclones, elutriation, eutectoid, fayalite, thermoplasticity. References [1]O. Bustamante. “Dissipation of mechanical energy in the discharge of a hydrocyclone”. (Dyna, Ed.) The network of Scientific Journals of Latin America, the Caribbean, Spain, and Portugal, vol. 80 (181), Pages 136-143, 2013. [2]K.Petersen, P.Aldrich, and D.Van.,”Hydrocyclone underflow monitoring using image processing methods. Minerals Engineering”, pp. 301-315,1996. [3]M. Farghaly,” Controlled Wash Water Injection to the hydrocyclone underflow” [Ph.D. Thesis]. Erlangen, FAU, 2009. [4]M, Schneider, and T. Neesse. “Overflow-control system for a hydrocyclone battery. Int. J. Miner. Process". 74, pp. 339 – 343, 2004. [5]J.Bergström., “Flow field and fiber fractionation studies in hydro cyclones” [Ph.D. Thesis] Stockholm, Sweden, Royal Institute of Technology, 2006. [6]C, Liu, L. Wang, and Q. Lui., “Investigation of energy loss mechanisms in cyclone separators”. Chemical Engineering Technology 28, pp. 1182-1190, 2005. [7]O.Dam. & E.Jeffes.,.”Model for detailed assessment of chemical composition of reduced iron ores from single measurement”. Ironmaking and Steelmaking, 1987. [8]E. Ringdalen., “Softening and melting of SiO2 an important parameter for reactions with quartz in Si production” pp 43-44, 2016.


Author(s):  
Jonathan Gratus

Abstract Since a classical charged point particle radiates energy and momentum it is argued that there must be a radiation reaction force. Here we present an action for the Maxwell-Lorentz without self interactions model, where each particle only responds to the fields of the other charged particles. The corresponding stress-energy tensor automatically conserves energy and momentum in Minkowski and other appropriate spacetimes. Hence there is no need for any radiation reaction.


2022 ◽  
Vol 130 (3) ◽  
pp. 407
Author(s):  
А.М. Белоненко ◽  
И.С. Двужилов ◽  
Ю.В. Двужилова ◽  
М.Б. Белоненко

The propagation of three-dimensional extremely short optical pulses (light bullets) with a Bessel cross section in a medium of carbon nanotubes placed in an optical resonator is considered. As a result of numerical calculations, it was found that such pulses propagate stably with conservation of energy in a limited region of space, including at large times of the order of 100 ps. Key words: extremely short optical pulses, nonlinear medium, light bullets, carbon nanotubes.


2021 ◽  
Vol 8 (2) ◽  
pp. 104-113
Author(s):  
YASMEEN ABID MAAN Abid Maan ◽  
Maryam Jameel ◽  
Dr Munazzah Akhtar

A house in composite climate of Lahore (Pakistan) needs intensive cooling in summers; energy recovery ventilation to reduce humidity during monsoon and comfortable indoor temperature during winters. All these conditions have to be fulfilled with a reduced load on energy resources. Recent trends in construction and design of residential buildings in Pakistan symbolize uncontrolled use of energy resources. There is no data available with planning and developing authorities of housing sector that shows an account of energy loads of built houses. The potential of conservation of energy will be analyzed by actually studying the cooling and heating loads of recently constructed houses Key Words: Energy Conservation Potential, Module Study, Simulations  


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Ihor Nochnichenko ◽  
Oleg Jakhno

The article discusses the energy analysis of transfer processes in the damping system. The basic theoretical foundations based on the equations of the energy balance of the hydraulic shock absorber and the law of conservation of energy are presented. The proposed approach is associated with the development of a methodology and scheme for calculating the technical system of vibration damping. The schemes of interaction of the system through the phenomena of transfer and functioning of the vibration protection system with the environment are presented. It is shown that damper systems are based on the physical process of transformation of mechanical energy into thermal energy with subsequent dissipation into the environment. The total energy distribution in damping problems takes the following form the mechanical energy of motion is absorbed due to the hydraulic resistance of the liquid and turns into a dissipative component, which can reach 80% of the total energy. A mathematical model of the law of conservation of energy is presented which includes a dissipative function. The analysis of how it is possible to design work processes in a shock absorber due to energy dissipation and similarity criteria: Euler, Froude, Reynolds, etc. As a result of physical experiments, it was found that the movement of a fluid in hydraulic calibrated throttles gives rise to cavitation and various physical phenomena and accompanying processes, in which there is a significant change in the energy balance and energy dissipation in non-stationary modes of fluid movement. The dependence of the total power loss of the shock absorber under changing operating conditions, and the diagram of physical processes and energy transformations in the problems of damping, which are in dissipative processes, are given. The article describes the principles that can be used for the design of devices and modules of damper systems of a wide class with the possibility of energy recovery and accumulation by introducing a damper into the system, for example, a motor generator, an inductor with permanent magnets or a peso element in the design of a traditional telescopic shock absorber.


2021 ◽  
Vol 12 (1) ◽  
pp. 62
Author(s):  
Muhammad Mahboob ◽  
Muzaffar Ali ◽  
Tanzeel ur Rashid ◽  
Rabia Hassan

The energy demand of developing countries increases every year. Large amounts of energy are consumed during the production and transportation of construction materials. Conservation of energy became important in the perspective of limiting carbon emissions into the environment and for decreasing the cost of materials. This article is concentrated on some issues affecting the embodied energy of construction materials mainly in the residential sector. Energy consumption in three various wall structures has been made. The comparison demonstrated that the embodied energy of traditional wall structures is 3-times higher than the energy efficient building materials. CO2 emissions produced by conventional materials and green building materials are 54.96 Kg CO2/m2 and 35.33 Kg CO2/m2, respectively. Finally, the results revealed substantial difference in embodied energy and carbon footprints of materials for which its production involves a high amount of energy consumption.


2021 ◽  
Vol 34 (4) ◽  
pp. 486-501
Author(s):  
Tuomo Suntola

We are taught to think that the description of relativistic phenomena requires distorted time and distance. The message of this essay is that, in a holistic perspective, time and distance are universal coordinate quantities, and relativity is a direct consequence of the conservation of energy. Instead of the kinematics/metrics-based approach of the theory of relativity, the dynamic universe (DU) approach starts from the dynamics of space as a whole and expresses relativity in terms of locally available energy instead of locally distorted time and distance. In such an approach, e.g., the frequency of atomic clocks at different states of motion and gravitation is obtained from the quantum mechanical solution of the characteristic frequencies, and the unique status of the velocity of light becomes understood via its linkage to the rest of space. In the kinematic/metrics-based theory of relativity, we postulate the principle of relativity, Lorentz covariance, the equivalence principle, the constancy of the speed of light, and the rest energy of mass objects. The conservation of momentum and energy is honored in local frames of reference, and time and distance are parameters in frame-to-frame observations. In the dynamics-based DU, the whole space is studied as a closed energy system and the energy in local structures is derived conserving the overall energy balance. Any local state of motion and gravitation in space is related, through a system of nested energy frames, to the state of rest in hypothetical homogeneous space, which serves as the universal frame of reference. Relativity of observations appears as a direct consequence of the overall energy balance and the linkage of local to the whole—with time and distance as universal coordinate quantities. DU postulates spherically closed space and zero-energy balance of motion and gravitation. DU does not need the relativity principle or any other postulates of the theory of relativity. Primarily, the theory of relativity is an empirically driven mathematical description of observations, with postulates formulated to support the mathematics. DU relies on mathematics built on the conservation of an overall zero-energy balance as the primary law of nature, which makes DU more like a metaphysically driven theory. Both approaches produce precise predictions. The choice is philosophical—nature is not dependent on the way we describe it.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Chaudry Masood Khalique ◽  
Karabo Plaatjie

In this work, we study the generalized 2D equal-width equation which arises in various fields of science. With the aid of numerous methods which includes Lie symmetry analysis, power series expansion and Weierstrass method, we produce closed-form solutions of this model. The exact solutions obtained are the snoidal wave, cnoidal wave, Weierstrass elliptic function, Jacobi elliptic cosine function, solitary wave and exponential function solutions. Moreover, we give a graphical representation of the obtained solutions using certain parametric values. Furthermore, the conserved vectors of the underlying equation are constructed by utilizing two approaches: the multiplier method and Noether’s theorem. The multiplier method provided us with four local conservation laws, whereas Noether’s theorem yielded five nonlocal conservation laws. The conservation laws that are constructed contain the conservation of energy and momentum.


Author(s):  
Liang Chen ◽  
Youpeng Huang ◽  
Tao Lu ◽  
Sanlei Dang ◽  
Zhengmin Kong

The current method of smart meter verification relies on manual regular sampling inspection, which is heavy in workload and poor in real-time, and can’t fully monitor all the equipments. Therefore, a remote real-time error monitoring algorithm is indispensable. We propose a smart meter error estimation model based on genetic optimized Levenberg-Marquarelt (LM) algorithm. Firstly, based on the law of conservation of energy, the relationship between smart meter error and electricity consumption is established. Then, LM algorithm is optimized based on genetic algorithm and used to estimate the operating error of electricity meter. Finally, we used the actual data of the pilot cities in a province for the experiment. The results show that the proposed method can effectively improve the accuracy of smart meter error estimation.


Sign in / Sign up

Export Citation Format

Share Document